edubm commited on
Commit
e8156cc
1 Parent(s): adffd0f

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,437 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:800
10
+ - loss:TripletLoss
11
+ base_model: sentence-transformers/all-mpnet-base-v2
12
+ datasets: []
13
+ widget:
14
+ - source_sentence: What is the advice given about the use of color in dataviz?
15
+ sentences:
16
+ - Don't use color if they communicate nothing.
17
+ - Four problems with Pie Charts are detailed in a guide by iCharts.net.
18
+ - Always use bright colors for highlighting important data.
19
+ - source_sentence: What is the effect of a large sample size on the use of jitter
20
+ in a boxplot?
21
+ sentences:
22
+ - A large sample size will enhance the use of jitter in a boxplot.
23
+ - If you have a large sample size, using jitter is not an option anymore since dots
24
+ will overlap, making the figure uninterpretable.
25
+ - It is a good practice to use small multiples.
26
+ - source_sentence: What is a suitable usage of pie charts in data visualization?
27
+ sentences:
28
+ - If you have a single series to display and all quantitative variables have the
29
+ same scale, then use a barplot or a lollipop plot, ranking the variables.
30
+ - Pie charts rapidly show parts to a whole better than any other plot. They are
31
+ most effective when used to compare parts to the whole.
32
+ - Pie charts are a flawed chart which can sometimes be justified if the differences
33
+ between groups are large.
34
+ - source_sentence: Where can a note on long labels be found?
35
+ sentences:
36
+ - https://www.data-to-viz.com/caveat/hard_label.html
37
+ - A pie chart can tell a story very well; that all the data points as a percentage
38
+ of the whole are very similar.
39
+ - https://twitter.com/r_graph_gallery?lang=en
40
+ - source_sentence: What is the reason pie plots can work as well as bar plots in some
41
+ scenarios?
42
+ sentences:
43
+ - Pie plots can work well for comparing portions a whole or portions one another,
44
+ especially when dealing with a single digit count of items.
45
+ - https://www.r-graph-gallery.com/line-plot/ and https://python-graph-gallery.com/line-chart/
46
+ - Thanks for your comment Tom, I do agree with you.
47
+ pipeline_tag: sentence-similarity
48
+ ---
49
+
50
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
51
+
52
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
53
+
54
+ ## Model Details
55
+
56
+ ### Model Description
57
+ - **Model Type:** Sentence Transformer
58
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
59
+ - **Maximum Sequence Length:** 384 tokens
60
+ - **Output Dimensionality:** 768 tokens
61
+ - **Similarity Function:** Cosine Similarity
62
+ <!-- - **Training Dataset:** Unknown -->
63
+ <!-- - **Language:** Unknown -->
64
+ <!-- - **License:** Unknown -->
65
+
66
+ ### Model Sources
67
+
68
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
69
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
70
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
71
+
72
+ ### Full Model Architecture
73
+
74
+ ```
75
+ SentenceTransformer(
76
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
77
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
78
+ (2): Normalize()
79
+ )
80
+ ```
81
+
82
+ ## Usage
83
+
84
+ ### Direct Usage (Sentence Transformers)
85
+
86
+ First install the Sentence Transformers library:
87
+
88
+ ```bash
89
+ pip install -U sentence-transformers
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+ ```python
94
+ from sentence_transformers import SentenceTransformer
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SentenceTransformer("edubm/vis-sim-triplets-mpnet")
98
+ # Run inference
99
+ sentences = [
100
+ 'What is the reason pie plots can work as well as bar plots in some scenarios?',
101
+ 'Pie plots can work well for comparing portions a whole or portions one another, especially when dealing with a single digit count of items.',
102
+ 'Thanks for your comment Tom, I do agree with you.',
103
+ ]
104
+ embeddings = model.encode(sentences)
105
+ print(embeddings.shape)
106
+ # [3, 768]
107
+
108
+ # Get the similarity scores for the embeddings
109
+ similarities = model.similarity(embeddings, embeddings)
110
+ print(similarities.shape)
111
+ # [3, 3]
112
+ ```
113
+
114
+ <!--
115
+ ### Direct Usage (Transformers)
116
+
117
+ <details><summary>Click to see the direct usage in Transformers</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Downstream Usage (Sentence Transformers)
124
+
125
+ You can finetune this model on your own dataset.
126
+
127
+ <details><summary>Click to expand</summary>
128
+
129
+ </details>
130
+ -->
131
+
132
+ <!--
133
+ ### Out-of-Scope Use
134
+
135
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
136
+ -->
137
+
138
+ <!--
139
+ ## Bias, Risks and Limitations
140
+
141
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
142
+ -->
143
+
144
+ <!--
145
+ ### Recommendations
146
+
147
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
148
+ -->
149
+
150
+ ## Training Details
151
+
152
+ ### Training Dataset
153
+
154
+ #### Unnamed Dataset
155
+
156
+
157
+ * Size: 800 training samples
158
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
159
+ * Approximate statistics based on the first 1000 samples:
160
+ | | anchor | positive | negative |
161
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
162
+ | type | string | string | string |
163
+ | details | <ul><li>min: 7 tokens</li><li>mean: 15.26 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 23.25 tokens</li><li>max: 306 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 16.38 tokens</li><li>max: 57 tokens</li></ul> |
164
+ * Samples:
165
+ | anchor | positive | negative |
166
+ |:-------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|
167
+ | <code>Did you ever figure out a solution to the error message problem when using your own data?</code> | <code>Yes, a solution was found. You have to add ' group = name ' inside the ' ggplot(aes())' like ggplot(aes(x=year, y=n,group=name)).</code> | <code>I recommend sorting by some feature of the data, instead of in alphabetical order of the names.</code> |
168
+ | <code>Why should you consider reordering your data when building a chart?</code> | <code>Reordering your data can help in better visualization. Sometimes the order of groups must be set by their features and not their values.</code> | <code>You should reorder your data to clean it.</code> |
169
+ | <code>What is represented on the X-axis of the chart?</code> | <code>The price ranges cut in several 10 euro bins.</code> | <code>The number of apartments per bin.</code> |
170
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
171
+ ```json
172
+ {
173
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
174
+ "triplet_margin": 5
175
+ }
176
+ ```
177
+
178
+ ### Evaluation Dataset
179
+
180
+ #### Unnamed Dataset
181
+
182
+
183
+ * Size: 200 evaluation samples
184
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
185
+ * Approximate statistics based on the first 1000 samples:
186
+ | | anchor | positive | negative |
187
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
188
+ | type | string | string | string |
189
+ | details | <ul><li>min: 8 tokens</li><li>mean: 14.99 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 22.38 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 16.08 tokens</li><li>max: 58 tokens</li></ul> |
190
+ * Samples:
191
+ | anchor | positive | negative |
192
+ |:--------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------|
193
+ | <code>What can be inferred about group C and B from the jittered boxplot?</code> | <code>Group C has a small sample size compared to the other groups. Group B seems to have a bimodal distribution with dots distributed in 2 groups: around y=18 and y=13.</code> | <code>Group C has the largest sample size and Group B has dots evenly distributed.</code> |
194
+ | <code>What can cause a reduction in computing time and help avoid overplotting when dealing with data?</code> | <code>Plotting only a fraction of your data can cause a reduction in computing time and help avoid overplotting.</code> | <code>Plotting all of your data is the best method to reduce computing time.</code> |
195
+ | <code>How can area charts be used for data visualization?</code> | <code>Area charts can be used to give a more general overview of the dataset, especially when used in combination with small multiples.</code> | <code>Area charts make it obvious to spot a particular group in a crowded data visualization.</code> |
196
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
197
+ ```json
198
+ {
199
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
200
+ "triplet_margin": 5
201
+ }
202
+ ```
203
+
204
+ ### Training Hyperparameters
205
+ #### Non-Default Hyperparameters
206
+
207
+ - `eval_strategy`: steps
208
+ - `per_device_train_batch_size`: 16
209
+ - `per_device_eval_batch_size`: 16
210
+ - `num_train_epochs`: 1
211
+ - `warmup_ratio`: 0.1
212
+ - `fp16`: True
213
+
214
+ #### All Hyperparameters
215
+ <details><summary>Click to expand</summary>
216
+
217
+ - `overwrite_output_dir`: False
218
+ - `do_predict`: False
219
+ - `eval_strategy`: steps
220
+ - `prediction_loss_only`: True
221
+ - `per_device_train_batch_size`: 16
222
+ - `per_device_eval_batch_size`: 16
223
+ - `per_gpu_train_batch_size`: None
224
+ - `per_gpu_eval_batch_size`: None
225
+ - `gradient_accumulation_steps`: 1
226
+ - `eval_accumulation_steps`: None
227
+ - `learning_rate`: 5e-05
228
+ - `weight_decay`: 0.0
229
+ - `adam_beta1`: 0.9
230
+ - `adam_beta2`: 0.999
231
+ - `adam_epsilon`: 1e-08
232
+ - `max_grad_norm`: 1.0
233
+ - `num_train_epochs`: 1
234
+ - `max_steps`: -1
235
+ - `lr_scheduler_type`: linear
236
+ - `lr_scheduler_kwargs`: {}
237
+ - `warmup_ratio`: 0.1
238
+ - `warmup_steps`: 0
239
+ - `log_level`: passive
240
+ - `log_level_replica`: warning
241
+ - `log_on_each_node`: True
242
+ - `logging_nan_inf_filter`: True
243
+ - `save_safetensors`: True
244
+ - `save_on_each_node`: False
245
+ - `save_only_model`: False
246
+ - `restore_callback_states_from_checkpoint`: False
247
+ - `no_cuda`: False
248
+ - `use_cpu`: False
249
+ - `use_mps_device`: False
250
+ - `seed`: 42
251
+ - `data_seed`: None
252
+ - `jit_mode_eval`: False
253
+ - `use_ipex`: False
254
+ - `bf16`: False
255
+ - `fp16`: True
256
+ - `fp16_opt_level`: O1
257
+ - `half_precision_backend`: auto
258
+ - `bf16_full_eval`: False
259
+ - `fp16_full_eval`: False
260
+ - `tf32`: None
261
+ - `local_rank`: 0
262
+ - `ddp_backend`: None
263
+ - `tpu_num_cores`: None
264
+ - `tpu_metrics_debug`: False
265
+ - `debug`: []
266
+ - `dataloader_drop_last`: False
267
+ - `dataloader_num_workers`: 0
268
+ - `dataloader_prefetch_factor`: None
269
+ - `past_index`: -1
270
+ - `disable_tqdm`: False
271
+ - `remove_unused_columns`: True
272
+ - `label_names`: None
273
+ - `load_best_model_at_end`: False
274
+ - `ignore_data_skip`: False
275
+ - `fsdp`: []
276
+ - `fsdp_min_num_params`: 0
277
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
278
+ - `fsdp_transformer_layer_cls_to_wrap`: None
279
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
280
+ - `deepspeed`: None
281
+ - `label_smoothing_factor`: 0.0
282
+ - `optim`: adamw_torch
283
+ - `optim_args`: None
284
+ - `adafactor`: False
285
+ - `group_by_length`: False
286
+ - `length_column_name`: length
287
+ - `ddp_find_unused_parameters`: None
288
+ - `ddp_bucket_cap_mb`: None
289
+ - `ddp_broadcast_buffers`: False
290
+ - `dataloader_pin_memory`: True
291
+ - `dataloader_persistent_workers`: False
292
+ - `skip_memory_metrics`: True
293
+ - `use_legacy_prediction_loop`: False
294
+ - `push_to_hub`: False
295
+ - `resume_from_checkpoint`: None
296
+ - `hub_model_id`: None
297
+ - `hub_strategy`: every_save
298
+ - `hub_private_repo`: False
299
+ - `hub_always_push`: False
300
+ - `gradient_checkpointing`: False
301
+ - `gradient_checkpointing_kwargs`: None
302
+ - `include_inputs_for_metrics`: False
303
+ - `eval_do_concat_batches`: True
304
+ - `fp16_backend`: auto
305
+ - `push_to_hub_model_id`: None
306
+ - `push_to_hub_organization`: None
307
+ - `mp_parameters`:
308
+ - `auto_find_batch_size`: False
309
+ - `full_determinism`: False
310
+ - `torchdynamo`: None
311
+ - `ray_scope`: last
312
+ - `ddp_timeout`: 1800
313
+ - `torch_compile`: False
314
+ - `torch_compile_backend`: None
315
+ - `torch_compile_mode`: None
316
+ - `dispatch_batches`: None
317
+ - `split_batches`: None
318
+ - `include_tokens_per_second`: False
319
+ - `include_num_input_tokens_seen`: False
320
+ - `neftune_noise_alpha`: None
321
+ - `optim_target_modules`: None
322
+ - `batch_eval_metrics`: False
323
+ - `batch_sampler`: batch_sampler
324
+ - `multi_dataset_batch_sampler`: proportional
325
+
326
+ </details>
327
+
328
+ ### Training Logs
329
+ | Epoch | Step | Training Loss | loss |
330
+ |:-----:|:----:|:-------------:|:------:|
331
+ | 0.02 | 1 | 4.8436 | 4.8922 |
332
+ | 0.04 | 2 | 4.9583 | 4.8904 |
333
+ | 0.06 | 3 | 4.8262 | 4.8862 |
334
+ | 0.08 | 4 | 4.8961 | 4.8820 |
335
+ | 0.1 | 5 | 4.9879 | 4.8754 |
336
+ | 0.12 | 6 | 4.8599 | 4.8680 |
337
+ | 0.14 | 7 | 4.9098 | 4.8586 |
338
+ | 0.16 | 8 | 4.8802 | 4.8496 |
339
+ | 0.18 | 9 | 4.8797 | 4.8392 |
340
+ | 0.2 | 10 | 4.8691 | 4.8307 |
341
+ | 0.22 | 11 | 4.9213 | 4.8224 |
342
+ | 0.24 | 12 | 4.88 | 4.8145 |
343
+ | 0.26 | 13 | 4.9131 | 4.8071 |
344
+ | 0.28 | 14 | 4.7596 | 4.8004 |
345
+ | 0.3 | 15 | 4.8388 | 4.7962 |
346
+ | 0.32 | 16 | 4.8434 | 4.7945 |
347
+ | 0.34 | 17 | 4.8726 | 4.7939 |
348
+ | 0.36 | 18 | 4.8049 | 4.7943 |
349
+ | 0.38 | 19 | 4.8225 | 4.7932 |
350
+ | 0.4 | 20 | 4.7631 | 4.7900 |
351
+ | 0.42 | 21 | 4.7841 | 4.7847 |
352
+ | 0.44 | 22 | 4.8077 | 4.7759 |
353
+ | 0.46 | 23 | 4.7731 | 4.7678 |
354
+ | 0.48 | 24 | 4.7623 | 4.7589 |
355
+ | 0.5 | 25 | 4.8572 | 4.7502 |
356
+ | 0.52 | 26 | 4.843 | 4.7392 |
357
+ | 0.54 | 27 | 4.6826 | 4.7292 |
358
+ | 0.56 | 28 | 4.7584 | 4.7180 |
359
+ | 0.58 | 29 | 4.7281 | 4.7078 |
360
+ | 0.6 | 30 | 4.7491 | 4.6982 |
361
+ | 0.62 | 31 | 4.7501 | 4.6897 |
362
+ | 0.64 | 32 | 4.6219 | 4.6826 |
363
+ | 0.66 | 33 | 4.7323 | 4.6768 |
364
+ | 0.68 | 34 | 4.5499 | 4.6702 |
365
+ | 0.7 | 35 | 4.7682 | 4.6648 |
366
+ | 0.72 | 36 | 4.6483 | 4.6589 |
367
+ | 0.74 | 37 | 4.6675 | 4.6589 |
368
+ | 0.76 | 38 | 4.7389 | 4.6527 |
369
+ | 0.78 | 39 | 4.7721 | 4.6465 |
370
+ | 0.8 | 40 | 4.6043 | 4.6418 |
371
+ | 0.82 | 41 | 4.7894 | 4.6375 |
372
+ | 0.84 | 42 | 4.6134 | 4.6341 |
373
+ | 0.86 | 43 | 4.6664 | 4.6307 |
374
+ | 0.88 | 44 | 4.5249 | 4.6264 |
375
+ | 0.9 | 45 | 4.7045 | 4.6227 |
376
+ | 0.92 | 46 | 4.7231 | 4.6198 |
377
+ | 0.94 | 47 | 4.7011 | 4.6176 |
378
+ | 0.96 | 48 | 4.5876 | 4.6159 |
379
+ | 0.98 | 49 | 4.7567 | 4.6146 |
380
+ | 1.0 | 50 | 4.6706 | 4.6138 |
381
+
382
+
383
+ ### Framework Versions
384
+ - Python: 3.10.12
385
+ - Sentence Transformers: 3.0.1
386
+ - Transformers: 4.41.2
387
+ - PyTorch: 2.3.0+cu121
388
+ - Accelerate: 0.31.0
389
+ - Datasets: 2.19.2
390
+ - Tokenizers: 0.19.1
391
+
392
+ ## Citation
393
+
394
+ ### BibTeX
395
+
396
+ #### Sentence Transformers
397
+ ```bibtex
398
+ @inproceedings{reimers-2019-sentence-bert,
399
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
400
+ author = "Reimers, Nils and Gurevych, Iryna",
401
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
402
+ month = "11",
403
+ year = "2019",
404
+ publisher = "Association for Computational Linguistics",
405
+ url = "https://arxiv.org/abs/1908.10084",
406
+ }
407
+ ```
408
+
409
+ #### TripletLoss
410
+ ```bibtex
411
+ @misc{hermans2017defense,
412
+ title={In Defense of the Triplet Loss for Person Re-Identification},
413
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
414
+ year={2017},
415
+ eprint={1703.07737},
416
+ archivePrefix={arXiv},
417
+ primaryClass={cs.CV}
418
+ }
419
+ ```
420
+
421
+ <!--
422
+ ## Glossary
423
+
424
+ *Clearly define terms in order to be accessible across audiences.*
425
+ -->
426
+
427
+ <!--
428
+ ## Model Card Authors
429
+
430
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
431
+ -->
432
+
433
+ <!--
434
+ ## Model Card Contact
435
+
436
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
437
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e75b1b19a25cd119a489a2533939877edee040900b401701ddda3d863261419
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff