Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.76 +/- 0.81
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf4ee5859cfb15681d709c24f764485a1f437b5d6f4b01d52ca848f3a9d6494d
|
3 |
+
size 108061
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a094040b010>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a0940415080>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1690551101293040192,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxfXXPrSRYjyFowI/xfXXPrSRYjyFowI/xfXXPrSRYjyFowI/xfXXPrSRYjyFowI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQZUjv0jFxj9YT5m+PS22Py+Fh79LU4k/NE6ev6jROz6YJ7W/rEfOv6/lkT/Ol08+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADF9dc+tJFiPIWjAj9bzwC8fe6AO6/U9LvF9dc+tJFiPIWjAj9bzwC8fe6AO6/U9LvF9dc+tJFiPIWjAj9bzwC8fe6AO6/U9LvF9dc+tJFiPIWjAj9bzwC8fe6AO6/U9LuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.42179695 0.01382868 0.5103076 ]\n [0.42179695 0.01382868 0.5103076 ]\n [0.42179695 0.01382868 0.5103076 ]\n [0.42179695 0.01382868 0.5103076 ]]",
|
38 |
+
"desired_goal": "[[-0.6389962 1.5528955 -0.29943347]\n [ 1.4232556 -1.058752 1.0728544 ]\n [-1.2367616 0.18341696 -1.4152708 ]\n [-1.6115623 1.1398219 0.20272753]]",
|
39 |
+
"observation": "[[ 0.42179695 0.01382868 0.5103076 -0.00786194 0.00393468 -0.00747164]\n [ 0.42179695 0.01382868 0.5103076 -0.00786194 0.00393468 -0.00747164]\n [ 0.42179695 0.01382868 0.5103076 -0.00786194 0.00393468 -0.00747164]\n [ 0.42179695 0.01382868 0.5103076 -0.00786194 0.00393468 -0.00747164]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAl6tevX4IoL2PYSU+byKQvR2jOD27K2M+Rni3vZpgDj1HN7M9tR3+vMwu8L3BXxA8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.05436286 -0.0781412 0.16150497]\n [-0.07037818 0.04507743 0.2218465 ]\n [-0.08958487 0.0347601 0.08750778]\n [-0.03102002 -0.11727676 0.00881189]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqHNFKSHY/L+UhpRSlIwBbJRLMowBdJRHQKZiMj8k2P11fZQoaAZoCWgPQwgm++dpwGACwJSGlFKUaBVLMmgWR0CmYfaHsTnJdX2UKGgGaAloD0MIRnnm5bCbAcCUhpRSlGgVSzJoFkdApmG61PWQOnV9lChoBmgJaA9DCEPHDipxHf6/lIaUUpRoFUsyaBZHQKZhfXXAdn11fZQoaAZoCWgPQwiQ14NJ8bHzv5SGlFKUaBVLMmgWR0CmYznsTnJUdX2UKGgGaAloD0MIyM7b2OzICMCUhpRSlGgVSzJoFkdApmL98Aq/d3V9lChoBmgJaA9DCPTF3osvmvy/lIaUUpRoFUsyaBZHQKZiwkVvddp1fZQoaAZoCWgPQwi1iv7QzNP2v5SGlFKUaBVLMmgWR0CmYoSwGGEgdX2UKGgGaAloD0MINLkYA+v49L+UhpRSlGgVSzJoFkdApmQyLfk3j3V9lChoBmgJaA9DCB42kZkLnPm/lIaUUpRoFUsyaBZHQKZj9kPtlZp1fZQoaAZoCWgPQwidSDDVzFoDwJSGlFKUaBVLMmgWR0CmY7qG+K0ldX2UKGgGaAloD0MIj46rkV3pCMCUhpRSlGgVSzJoFkdApmN9ATqSo3V9lChoBmgJaA9DCBwJNNjUOQzAlIaUUpRoFUsyaBZHQKZlRpD/lyR1fZQoaAZoCWgPQwjRrkLKT0oBwJSGlFKUaBVLMmgWR0CmZQtdiUgTdX2UKGgGaAloD0MI8wNXeQKhAcCUhpRSlGgVSzJoFkdApmTQG+sYEXV9lChoBmgJaA9DCO+s3XahGQDAlIaUUpRoFUsyaBZHQKZkk51/2Cd1fZQoaAZoCWgPQwhN+RBUjV76v5SGlFKUaBVLMmgWR0CmZuEOy3TedX2UKGgGaAloD0MIFt7lIr4T9L+UhpRSlGgVSzJoFkdApmal5fMOgHV9lChoBmgJaA9DCLVRnQ5kHQTAlIaUUpRoFUsyaBZHQKZmaw7DEWJ1fZQoaAZoCWgPQwhdbjDUYcX3v5SGlFKUaBVLMmgWR0CmZi5hBqsVdX2UKGgGaAloD0MIY7X5f9VR/b+UhpRSlGgVSzJoFkdApmiK46Oo53V9lChoBmgJaA9DCEax3NJqiPq/lIaUUpRoFUsyaBZHQKZoT9F4LTh1fZQoaAZoCWgPQwhHx9XIrrTvv5SGlFKUaBVLMmgWR0CmaBTUZvUCdX2UKGgGaAloD0MIAb9GkiBcAMCUhpRSlGgVSzJoFkdApmfZ8WsRx3V9lChoBmgJaA9DCPSnjep04AXAlIaUUpRoFUsyaBZHQKZqQQV9F4N1fZQoaAZoCWgPQwipEfqZel37v5SGlFKUaBVLMmgWR0CmagXyiEg4dX2UKGgGaAloD0MIRnnm5bDbAsCUhpRSlGgVSzJoFkdApmnLWd3B6HV9lChoBmgJaA9DCA2l9iLajgHAlIaUUpRoFUsyaBZHQKZpjrD63y91fZQoaAZoCWgPQwiBBwYQPjQDwJSGlFKUaBVLMmgWR0CmbBxLCemOdX2UKGgGaAloD0MIwJfCg2bX+b+UhpRSlGgVSzJoFkdApmvhRCQcP3V9lChoBmgJaA9DCMKjjSPWYgPAlIaUUpRoFUsyaBZHQKZrppKzzEt1fZQoaAZoCWgPQwhXeJeL+M4CwJSGlFKUaBVLMmgWR0Cma2ohyKekdX2UKGgGaAloD0MIy7+WV6636r+UhpRSlGgVSzJoFkdApm1EQAdXDHV9lChoBmgJaA9DCJHWGHRC6PG/lIaUUpRoFUsyaBZHQKZtCExIre91fZQoaAZoCWgPQwgjumddo+X1v5SGlFKUaBVLMmgWR0CmbMyvkiljdX2UKGgGaAloD0MIPEz75v5q+r+UhpRSlGgVSzJoFkdApmyPU2DQJHV9lChoBmgJaA9DCGDnps04Tfy/lIaUUpRoFUsyaBZHQKZuS51/2Cd1fZQoaAZoCWgPQwj92Y8UkaEEwJSGlFKUaBVLMmgWR0Cmbg/VZs9CdX2UKGgGaAloD0MIhlYnZygu97+UhpRSlGgVSzJoFkdApm3UP8Q7LnV9lChoBmgJaA9DCJ0SEJNwYfm/lIaUUpRoFUsyaBZHQKZtlumaYu11fZQoaAZoCWgPQwi1T8djBurzv5SGlFKUaBVLMmgWR0Cmb14dyT6jdX2UKGgGaAloD0MIwsJJmj/m/L+UhpRSlGgVSzJoFkdApm8iWom5UnV9lChoBmgJaA9DCHuH26FhEQTAlIaUUpRoFUsyaBZHQKZu5q4YrJ91fZQoaAZoCWgPQwguVWmLa7z9v5SGlFKUaBVLMmgWR0Cmbqk3juKGdX2UKGgGaAloD0MIA+/k02Pb9b+UhpRSlGgVSzJoFkdApnBmOp84P3V9lChoBmgJaA9DCIMwt3u5D/y/lIaUUpRoFUsyaBZHQKZwKohpxm11fZQoaAZoCWgPQwjIX1rUJzkKwJSGlFKUaBVLMmgWR0Cmb+7p3X7MdX2UKGgGaAloD0MIukxNgjdk+7+UhpRSlGgVSzJoFkdApm+xtix3V3V9lChoBmgJaA9DCEVI3c6+svi/lIaUUpRoFUsyaBZHQKZxdhfBvaV1fZQoaAZoCWgPQwgS91j60KUGwJSGlFKUaBVLMmgWR0CmcTo9s7+2dX2UKGgGaAloD0MILV3BNuKJ/b+UhpRSlGgVSzJoFkdApnD+mpEQXnV9lChoBmgJaA9DCMoZijvehADAlIaUUpRoFUsyaBZHQKZwwRdQfp51fZQoaAZoCWgPQwi5xJEHIgv2v5SGlFKUaBVLMmgWR0Cmco9kBjnWdX2UKGgGaAloD0MId0gxQKIJ9L+UhpRSlGgVSzJoFkdApnJTr/sE7nV9lChoBmgJaA9DCCybOSS10Pa/lIaUUpRoFUsyaBZHQKZyGB4lhPV1fZQoaAZoCWgPQwgTKGIRw64PwJSGlFKUaBVLMmgWR0Cmcdr8R+SbdX2UKGgGaAloD0MI3ewPlNv23L+UhpRSlGgVSzJoFkdApnOtJ+UhV3V9lChoBmgJaA9DCJ5+UBcplADAlIaUUpRoFUsyaBZHQKZzcWbgCOp1fZQoaAZoCWgPQwh9y5wui6kHwJSGlFKUaBVLMmgWR0CmczXXiBGydX2UKGgGaAloD0MI0hvuI7cGAsCUhpRSlGgVSzJoFkdApnL4iJO32HV9lChoBmgJaA9DCL1WQndJXP2/lIaUUpRoFUsyaBZHQKZ0w274BWB1fZQoaAZoCWgPQwj8jXbc8Dv7v5SGlFKUaBVLMmgWR0CmdIeQ2dd3dX2UKGgGaAloD0MI/7ClR1M9/L+UhpRSlGgVSzJoFkdApnRMC9ytFXV9lChoBmgJaA9DCHZPHhZq7QDAlIaUUpRoFUsyaBZHQKZ0DrsSkCV1fZQoaAZoCWgPQwj2KFyPwhUBwJSGlFKUaBVLMmgWR0Cmddr9ETg3dX2UKGgGaAloD0MI4Sh5dY5BAsCUhpRSlGgVSzJoFkdApnWfUKArhHV9lChoBmgJaA9DCPZ+ox03fPS/lIaUUpRoFUsyaBZHQKZ1Y88La251fZQoaAZoCWgPQwgCSdi3k+gKwJSGlFKUaBVLMmgWR0CmdSacqe9SdX2UKGgGaAloD0MIFclXAimx+L+UhpRSlGgVSzJoFkdApnbydnTRY3V9lChoBmgJaA9DCLnH0ocu6PS/lIaUUpRoFUsyaBZHQKZ2tsi0OVh1fZQoaAZoCWgPQwjZImk3+hgCwJSGlFKUaBVLMmgWR0CmdntSydFwdX2UKGgGaAloD0MIrb8lAP9U97+UhpRSlGgVSzJoFkdApnY+EAYHgXV9lChoBmgJaA9DCP59xoUDIf+/lIaUUpRoFUsyaBZHQKZ4AhUzbex1fZQoaAZoCWgPQwgRABx79tz4v5SGlFKUaBVLMmgWR0Cmd8ZB1LamdX2UKGgGaAloD0MIcJf9utMd9L+UhpRSlGgVSzJoFkdApneKvkili3V9lChoBmgJaA9DCLVRnQ5kvf2/lIaUUpRoFUsyaBZHQKZ3TX1anrJ1fZQoaAZoCWgPQwjiICHKF/T8v5SGlFKUaBVLMmgWR0CmeRSxzJZGdX2UKGgGaAloD0MI9MRztoDQ77+UhpRSlGgVSzJoFkdApnjZzFMqSXV9lChoBmgJaA9DCIm0jT9R2fq/lIaUUpRoFUsyaBZHQKZ4nz3AVO91fZQoaAZoCWgPQwgoY3yYvewDwJSGlFKUaBVLMmgWR0CmeGLWI42kdX2UKGgGaAloD0MIB3jSwmVV+L+UhpRSlGgVSzJoFkdApnon4ubqhXV9lChoBmgJaA9DCH1Yb9QK0wPAlIaUUpRoFUsyaBZHQKZ57B/qgRN1fZQoaAZoCWgPQwg8MIDwoSQAwJSGlFKUaBVLMmgWR0CmebCaAnUldX2UKGgGaAloD0MIAoHOpE1V+7+UhpRSlGgVSzJoFkdApnlzQeFL4HV9lChoBmgJaA9DCDeLFwtDZADAlIaUUpRoFUsyaBZHQKZ7Ol3Qla91fZQoaAZoCWgPQwjT+fAsQcbgv5SGlFKUaBVLMmgWR0Cmev6U7jkudX2UKGgGaAloD0MIZjOHpBbKB8CUhpRSlGgVSzJoFkdApnrC75Ec83V9lChoBmgJaA9DCOdvQiECjuK/lIaUUpRoFUsyaBZHQKZ6haJyhi91fZQoaAZoCWgPQwiTxJJy9xkJwJSGlFKUaBVLMmgWR0CmfEV7hNucdX2UKGgGaAloD0MIR//LtWiB+r+UhpRSlGgVSzJoFkdApnwJ3C9AX3V9lChoBmgJaA9DCPAXsyWrggHAlIaUUpRoFUsyaBZHQKZ7zj8UEgZ1fZQoaAZoCWgPQwjsLlBSYMHzv5SGlFKUaBVLMmgWR0Cme5EbYK6XdX2UKGgGaAloD0MIdVWgFoPH9b+UhpRSlGgVSzJoFkdApn1YbVBlc3V9lChoBmgJaA9DCE0VjErqhAnAlIaUUpRoFUsyaBZHQKZ9HLxqfvp1fZQoaAZoCWgPQwjhfVUuVH4BwJSGlFKUaBVLMmgWR0CmfOD7ALy+dX2UKGgGaAloD0MIT0ATYcNT9L+UhpRSlGgVSzJoFkdApnyjyhBZ6nV9lChoBmgJaA9DCLKbGf1ouAHAlIaUUpRoFUsyaBZHQKZ+aLfDUEx1fZQoaAZoCWgPQwiW0cjnFY/2v5SGlFKUaBVLMmgWR0Cmfi0snRb9dX2UKGgGaAloD0MI4Qm9/iS+6r+UhpRSlGgVSzJoFkdApn3xrzoUz3V9lChoBmgJaA9DCL5O6svSjv+/lIaUUpRoFUsyaBZHQKZ9tHhjvux1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02e43d0910cb2ad9b5e66c70dff8d0d9655c2e09200dfe10c016d7cddebf50e0
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:732fd36da1625f585afb868e639e0725ce995de08ad4291e9583673fe2c61209
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a094040b010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a0940415080>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690551101293040192, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxfXXPrSRYjyFowI/xfXXPrSRYjyFowI/xfXXPrSRYjyFowI/xfXXPrSRYjyFowI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQZUjv0jFxj9YT5m+PS22Py+Fh79LU4k/NE6ev6jROz6YJ7W/rEfOv6/lkT/Ol08+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADF9dc+tJFiPIWjAj9bzwC8fe6AO6/U9LvF9dc+tJFiPIWjAj9bzwC8fe6AO6/U9LvF9dc+tJFiPIWjAj9bzwC8fe6AO6/U9LvF9dc+tJFiPIWjAj9bzwC8fe6AO6/U9LuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42179695 0.01382868 0.5103076 ]\n [0.42179695 0.01382868 0.5103076 ]\n [0.42179695 0.01382868 0.5103076 ]\n [0.42179695 0.01382868 0.5103076 ]]", "desired_goal": "[[-0.6389962 1.5528955 -0.29943347]\n [ 1.4232556 -1.058752 1.0728544 ]\n [-1.2367616 0.18341696 -1.4152708 ]\n [-1.6115623 1.1398219 0.20272753]]", "observation": "[[ 0.42179695 0.01382868 0.5103076 -0.00786194 0.00393468 -0.00747164]\n [ 0.42179695 0.01382868 0.5103076 -0.00786194 0.00393468 -0.00747164]\n [ 0.42179695 0.01382868 0.5103076 -0.00786194 0.00393468 -0.00747164]\n [ 0.42179695 0.01382868 0.5103076 -0.00786194 0.00393468 -0.00747164]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAl6tevX4IoL2PYSU+byKQvR2jOD27K2M+Rni3vZpgDj1HN7M9tR3+vMwu8L3BXxA8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05436286 -0.0781412 0.16150497]\n [-0.07037818 0.04507743 0.2218465 ]\n [-0.08958487 0.0347601 0.08750778]\n [-0.03102002 -0.11727676 0.00881189]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqHNFKSHY/L+UhpRSlIwBbJRLMowBdJRHQKZiMj8k2P11fZQoaAZoCWgPQwgm++dpwGACwJSGlFKUaBVLMmgWR0CmYfaHsTnJdX2UKGgGaAloD0MIRnnm5bCbAcCUhpRSlGgVSzJoFkdApmG61PWQOnV9lChoBmgJaA9DCEPHDipxHf6/lIaUUpRoFUsyaBZHQKZhfXXAdn11fZQoaAZoCWgPQwiQ14NJ8bHzv5SGlFKUaBVLMmgWR0CmYznsTnJUdX2UKGgGaAloD0MIyM7b2OzICMCUhpRSlGgVSzJoFkdApmL98Aq/d3V9lChoBmgJaA9DCPTF3osvmvy/lIaUUpRoFUsyaBZHQKZiwkVvddp1fZQoaAZoCWgPQwi1iv7QzNP2v5SGlFKUaBVLMmgWR0CmYoSwGGEgdX2UKGgGaAloD0MINLkYA+v49L+UhpRSlGgVSzJoFkdApmQyLfk3j3V9lChoBmgJaA9DCB42kZkLnPm/lIaUUpRoFUsyaBZHQKZj9kPtlZp1fZQoaAZoCWgPQwidSDDVzFoDwJSGlFKUaBVLMmgWR0CmY7qG+K0ldX2UKGgGaAloD0MIj46rkV3pCMCUhpRSlGgVSzJoFkdApmN9ATqSo3V9lChoBmgJaA9DCBwJNNjUOQzAlIaUUpRoFUsyaBZHQKZlRpD/lyR1fZQoaAZoCWgPQwjRrkLKT0oBwJSGlFKUaBVLMmgWR0CmZQtdiUgTdX2UKGgGaAloD0MI8wNXeQKhAcCUhpRSlGgVSzJoFkdApmTQG+sYEXV9lChoBmgJaA9DCO+s3XahGQDAlIaUUpRoFUsyaBZHQKZkk51/2Cd1fZQoaAZoCWgPQwhN+RBUjV76v5SGlFKUaBVLMmgWR0CmZuEOy3TedX2UKGgGaAloD0MIFt7lIr4T9L+UhpRSlGgVSzJoFkdApmal5fMOgHV9lChoBmgJaA9DCLVRnQ5kHQTAlIaUUpRoFUsyaBZHQKZmaw7DEWJ1fZQoaAZoCWgPQwhdbjDUYcX3v5SGlFKUaBVLMmgWR0CmZi5hBqsVdX2UKGgGaAloD0MIY7X5f9VR/b+UhpRSlGgVSzJoFkdApmiK46Oo53V9lChoBmgJaA9DCEax3NJqiPq/lIaUUpRoFUsyaBZHQKZoT9F4LTh1fZQoaAZoCWgPQwhHx9XIrrTvv5SGlFKUaBVLMmgWR0CmaBTUZvUCdX2UKGgGaAloD0MIAb9GkiBcAMCUhpRSlGgVSzJoFkdApmfZ8WsRx3V9lChoBmgJaA9DCPSnjep04AXAlIaUUpRoFUsyaBZHQKZqQQV9F4N1fZQoaAZoCWgPQwipEfqZel37v5SGlFKUaBVLMmgWR0CmagXyiEg4dX2UKGgGaAloD0MIRnnm5bDbAsCUhpRSlGgVSzJoFkdApmnLWd3B6HV9lChoBmgJaA9DCA2l9iLajgHAlIaUUpRoFUsyaBZHQKZpjrD63y91fZQoaAZoCWgPQwiBBwYQPjQDwJSGlFKUaBVLMmgWR0CmbBxLCemOdX2UKGgGaAloD0MIwJfCg2bX+b+UhpRSlGgVSzJoFkdApmvhRCQcP3V9lChoBmgJaA9DCMKjjSPWYgPAlIaUUpRoFUsyaBZHQKZrppKzzEt1fZQoaAZoCWgPQwhXeJeL+M4CwJSGlFKUaBVLMmgWR0Cma2ohyKekdX2UKGgGaAloD0MIy7+WV6636r+UhpRSlGgVSzJoFkdApm1EQAdXDHV9lChoBmgJaA9DCJHWGHRC6PG/lIaUUpRoFUsyaBZHQKZtCExIre91fZQoaAZoCWgPQwgjumddo+X1v5SGlFKUaBVLMmgWR0CmbMyvkiljdX2UKGgGaAloD0MIPEz75v5q+r+UhpRSlGgVSzJoFkdApmyPU2DQJHV9lChoBmgJaA9DCGDnps04Tfy/lIaUUpRoFUsyaBZHQKZuS51/2Cd1fZQoaAZoCWgPQwj92Y8UkaEEwJSGlFKUaBVLMmgWR0Cmbg/VZs9CdX2UKGgGaAloD0MIhlYnZygu97+UhpRSlGgVSzJoFkdApm3UP8Q7LnV9lChoBmgJaA9DCJ0SEJNwYfm/lIaUUpRoFUsyaBZHQKZtlumaYu11fZQoaAZoCWgPQwi1T8djBurzv5SGlFKUaBVLMmgWR0Cmb14dyT6jdX2UKGgGaAloD0MIwsJJmj/m/L+UhpRSlGgVSzJoFkdApm8iWom5UnV9lChoBmgJaA9DCHuH26FhEQTAlIaUUpRoFUsyaBZHQKZu5q4YrJ91fZQoaAZoCWgPQwguVWmLa7z9v5SGlFKUaBVLMmgWR0Cmbqk3juKGdX2UKGgGaAloD0MIA+/k02Pb9b+UhpRSlGgVSzJoFkdApnBmOp84P3V9lChoBmgJaA9DCIMwt3u5D/y/lIaUUpRoFUsyaBZHQKZwKohpxm11fZQoaAZoCWgPQwjIX1rUJzkKwJSGlFKUaBVLMmgWR0Cmb+7p3X7MdX2UKGgGaAloD0MIukxNgjdk+7+UhpRSlGgVSzJoFkdApm+xtix3V3V9lChoBmgJaA9DCEVI3c6+svi/lIaUUpRoFUsyaBZHQKZxdhfBvaV1fZQoaAZoCWgPQwgS91j60KUGwJSGlFKUaBVLMmgWR0CmcTo9s7+2dX2UKGgGaAloD0MILV3BNuKJ/b+UhpRSlGgVSzJoFkdApnD+mpEQXnV9lChoBmgJaA9DCMoZijvehADAlIaUUpRoFUsyaBZHQKZwwRdQfp51fZQoaAZoCWgPQwi5xJEHIgv2v5SGlFKUaBVLMmgWR0Cmco9kBjnWdX2UKGgGaAloD0MId0gxQKIJ9L+UhpRSlGgVSzJoFkdApnJTr/sE7nV9lChoBmgJaA9DCCybOSS10Pa/lIaUUpRoFUsyaBZHQKZyGB4lhPV1fZQoaAZoCWgPQwgTKGIRw64PwJSGlFKUaBVLMmgWR0Cmcdr8R+SbdX2UKGgGaAloD0MI3ewPlNv23L+UhpRSlGgVSzJoFkdApnOtJ+UhV3V9lChoBmgJaA9DCJ5+UBcplADAlIaUUpRoFUsyaBZHQKZzcWbgCOp1fZQoaAZoCWgPQwh9y5wui6kHwJSGlFKUaBVLMmgWR0CmczXXiBGydX2UKGgGaAloD0MI0hvuI7cGAsCUhpRSlGgVSzJoFkdApnL4iJO32HV9lChoBmgJaA9DCL1WQndJXP2/lIaUUpRoFUsyaBZHQKZ0w274BWB1fZQoaAZoCWgPQwj8jXbc8Dv7v5SGlFKUaBVLMmgWR0CmdIeQ2dd3dX2UKGgGaAloD0MI/7ClR1M9/L+UhpRSlGgVSzJoFkdApnRMC9ytFXV9lChoBmgJaA9DCHZPHhZq7QDAlIaUUpRoFUsyaBZHQKZ0DrsSkCV1fZQoaAZoCWgPQwj2KFyPwhUBwJSGlFKUaBVLMmgWR0Cmddr9ETg3dX2UKGgGaAloD0MI4Sh5dY5BAsCUhpRSlGgVSzJoFkdApnWfUKArhHV9lChoBmgJaA9DCPZ+ox03fPS/lIaUUpRoFUsyaBZHQKZ1Y88La251fZQoaAZoCWgPQwgCSdi3k+gKwJSGlFKUaBVLMmgWR0CmdSacqe9SdX2UKGgGaAloD0MIFclXAimx+L+UhpRSlGgVSzJoFkdApnbydnTRY3V9lChoBmgJaA9DCLnH0ocu6PS/lIaUUpRoFUsyaBZHQKZ2tsi0OVh1fZQoaAZoCWgPQwjZImk3+hgCwJSGlFKUaBVLMmgWR0CmdntSydFwdX2UKGgGaAloD0MIrb8lAP9U97+UhpRSlGgVSzJoFkdApnY+EAYHgXV9lChoBmgJaA9DCP59xoUDIf+/lIaUUpRoFUsyaBZHQKZ4AhUzbex1fZQoaAZoCWgPQwgRABx79tz4v5SGlFKUaBVLMmgWR0Cmd8ZB1LamdX2UKGgGaAloD0MIcJf9utMd9L+UhpRSlGgVSzJoFkdApneKvkili3V9lChoBmgJaA9DCLVRnQ5kvf2/lIaUUpRoFUsyaBZHQKZ3TX1anrJ1fZQoaAZoCWgPQwjiICHKF/T8v5SGlFKUaBVLMmgWR0CmeRSxzJZGdX2UKGgGaAloD0MI9MRztoDQ77+UhpRSlGgVSzJoFkdApnjZzFMqSXV9lChoBmgJaA9DCIm0jT9R2fq/lIaUUpRoFUsyaBZHQKZ4nz3AVO91fZQoaAZoCWgPQwgoY3yYvewDwJSGlFKUaBVLMmgWR0CmeGLWI42kdX2UKGgGaAloD0MIB3jSwmVV+L+UhpRSlGgVSzJoFkdApnon4ubqhXV9lChoBmgJaA9DCH1Yb9QK0wPAlIaUUpRoFUsyaBZHQKZ57B/qgRN1fZQoaAZoCWgPQwg8MIDwoSQAwJSGlFKUaBVLMmgWR0CmebCaAnUldX2UKGgGaAloD0MIAoHOpE1V+7+UhpRSlGgVSzJoFkdApnlzQeFL4HV9lChoBmgJaA9DCDeLFwtDZADAlIaUUpRoFUsyaBZHQKZ7Ol3Qla91fZQoaAZoCWgPQwjT+fAsQcbgv5SGlFKUaBVLMmgWR0Cmev6U7jkudX2UKGgGaAloD0MIZjOHpBbKB8CUhpRSlGgVSzJoFkdApnrC75Ec83V9lChoBmgJaA9DCOdvQiECjuK/lIaUUpRoFUsyaBZHQKZ6haJyhi91fZQoaAZoCWgPQwiTxJJy9xkJwJSGlFKUaBVLMmgWR0CmfEV7hNucdX2UKGgGaAloD0MIR//LtWiB+r+UhpRSlGgVSzJoFkdApnwJ3C9AX3V9lChoBmgJaA9DCPAXsyWrggHAlIaUUpRoFUsyaBZHQKZ7zj8UEgZ1fZQoaAZoCWgPQwjsLlBSYMHzv5SGlFKUaBVLMmgWR0Cme5EbYK6XdX2UKGgGaAloD0MIdVWgFoPH9b+UhpRSlGgVSzJoFkdApn1YbVBlc3V9lChoBmgJaA9DCE0VjErqhAnAlIaUUpRoFUsyaBZHQKZ9HLxqfvp1fZQoaAZoCWgPQwjhfVUuVH4BwJSGlFKUaBVLMmgWR0CmfOD7ALy+dX2UKGgGaAloD0MIT0ATYcNT9L+UhpRSlGgVSzJoFkdApnyjyhBZ6nV9lChoBmgJaA9DCLKbGf1ouAHAlIaUUpRoFUsyaBZHQKZ+aLfDUEx1fZQoaAZoCWgPQwiW0cjnFY/2v5SGlFKUaBVLMmgWR0Cmfi0snRb9dX2UKGgGaAloD0MI4Qm9/iS+6r+UhpRSlGgVSzJoFkdApn3xrzoUz3V9lChoBmgJaA9DCL5O6svSjv+/lIaUUpRoFUsyaBZHQKZ9tHhjvux1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (328 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.763766423938796, "std_reward": 0.8142207478389483, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-28T14:19:44.945623"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b0d312edae77a0d99e014f9837fc4067a4d577ccf92f41142db144bb485fd4c
|
3 |
+
size 2387
|