eformat commited on
Commit
2603206
1 Parent(s): 6f50516

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ibm-granite/granite-3.0-8b-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ibm-granite/granite-3.0-8b-instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a09f72564127e675a61ec7d58c2b23ee0225211e1d406d4e469fe6bd74a8dc1
3
+ size 34100216
checkpoint-200/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ibm-granite/granite-3.0-8b-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-200/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ibm-granite/granite-3.0-8b-instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a09f72564127e675a61ec7d58c2b23ee0225211e1d406d4e469fe6bd74a8dc1
3
+ size 34100216
checkpoint-200/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:442b87a1767f1aa22edbdbe9e6f4ca2c59b5587a8346c755af8d0ae24e68f1ba
3
+ size 68292346
checkpoint-200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6db1565fdf085bc8560b9b4bdd5f55abb40db42feac17284b294419663599c75
3
+ size 14244
checkpoint-200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a39755222377151208b988e4341f8c8d9958c119c2f9cf7ee718109a8d7880b
3
+ size 1064
checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,1433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.15891934843067143,
5
+ "eval_steps": 500,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0007945967421533572,
13
+ "grad_norm": NaN,
14
+ "learning_rate": 0.0,
15
+ "loss": 2.9992,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0015891934843067143,
20
+ "grad_norm": 2.3542397022247314,
21
+ "learning_rate": 2.0000000000000003e-06,
22
+ "loss": 2.4211,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0023837902264600714,
27
+ "grad_norm": 1.7234137058258057,
28
+ "learning_rate": 4.000000000000001e-06,
29
+ "loss": 2.4802,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.0031783869686134287,
34
+ "grad_norm": 1.8402104377746582,
35
+ "learning_rate": 6e-06,
36
+ "loss": 2.5004,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.003972983710766786,
41
+ "grad_norm": 1.9447062015533447,
42
+ "learning_rate": 8.000000000000001e-06,
43
+ "loss": 2.5601,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.004767580452920143,
48
+ "grad_norm": 1.6480785608291626,
49
+ "learning_rate": 1e-05,
50
+ "loss": 2.3849,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.0055621771950735005,
55
+ "grad_norm": 8.942625999450684,
56
+ "learning_rate": 1.2e-05,
57
+ "loss": 2.9789,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.006356773937226857,
62
+ "grad_norm": 4.155797958374023,
63
+ "learning_rate": 1.4000000000000001e-05,
64
+ "loss": 2.6198,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.007151370679380214,
69
+ "grad_norm": 1.6816856861114502,
70
+ "learning_rate": 1.6000000000000003e-05,
71
+ "loss": 2.4154,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.007945967421533572,
76
+ "grad_norm": 2.22641921043396,
77
+ "learning_rate": 1.8e-05,
78
+ "loss": 2.5419,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.00874056416368693,
83
+ "grad_norm": 8.44351577758789,
84
+ "learning_rate": 2e-05,
85
+ "loss": 2.2415,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.009535160905840286,
90
+ "grad_norm": 1.797033667564392,
91
+ "learning_rate": 2.2000000000000003e-05,
92
+ "loss": 2.4743,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.010329757647993643,
97
+ "grad_norm": 2.222118616104126,
98
+ "learning_rate": 2.4e-05,
99
+ "loss": 2.3,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.011124354390147001,
104
+ "grad_norm": 2.0043039321899414,
105
+ "learning_rate": 2.6000000000000002e-05,
106
+ "loss": 2.1184,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.011918951132300357,
111
+ "grad_norm": 2.0246055126190186,
112
+ "learning_rate": 2.8000000000000003e-05,
113
+ "loss": 2.159,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.012713547874453715,
118
+ "grad_norm": 9.5096435546875,
119
+ "learning_rate": 3e-05,
120
+ "loss": 3.0276,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.013508144616607072,
125
+ "grad_norm": 2.858501672744751,
126
+ "learning_rate": 3.2000000000000005e-05,
127
+ "loss": 2.4969,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.014302741358760428,
132
+ "grad_norm": 10.519010543823242,
133
+ "learning_rate": 3.4000000000000007e-05,
134
+ "loss": 2.9221,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.015097338100913786,
139
+ "grad_norm": 2.304163932800293,
140
+ "learning_rate": 3.6e-05,
141
+ "loss": 2.4857,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.015891934843067144,
146
+ "grad_norm": 2.059422731399536,
147
+ "learning_rate": 3.8e-05,
148
+ "loss": 2.2824,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.0166865315852205,
153
+ "grad_norm": 2.584183692932129,
154
+ "learning_rate": 4e-05,
155
+ "loss": 2.2176,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.01748112832737386,
160
+ "grad_norm": 3.7771871089935303,
161
+ "learning_rate": 4.2e-05,
162
+ "loss": 2.9221,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.018275725069527213,
167
+ "grad_norm": 1.889650583267212,
168
+ "learning_rate": 4.4000000000000006e-05,
169
+ "loss": 2.3082,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.01907032181168057,
174
+ "grad_norm": 3.319291353225708,
175
+ "learning_rate": 4.600000000000001e-05,
176
+ "loss": 2.19,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.01986491855383393,
181
+ "grad_norm": 4.1281352043151855,
182
+ "learning_rate": 4.8e-05,
183
+ "loss": 2.1096,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.020659515295987287,
188
+ "grad_norm": 2.4024288654327393,
189
+ "learning_rate": 5e-05,
190
+ "loss": 2.208,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.021454112038140644,
195
+ "grad_norm": 15.567670822143555,
196
+ "learning_rate": 5.2000000000000004e-05,
197
+ "loss": 2.4704,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.022248708780294002,
202
+ "grad_norm": 2.64872145652771,
203
+ "learning_rate": 5.4000000000000005e-05,
204
+ "loss": 2.1112,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.023043305522447356,
209
+ "grad_norm": 6.033721446990967,
210
+ "learning_rate": 5.6000000000000006e-05,
211
+ "loss": 2.7668,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.023837902264600714,
216
+ "grad_norm": 2.7915563583374023,
217
+ "learning_rate": 5.8e-05,
218
+ "loss": 2.1103,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.02463249900675407,
223
+ "grad_norm": 2.611234664916992,
224
+ "learning_rate": 6e-05,
225
+ "loss": 2.038,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.02542709574890743,
230
+ "grad_norm": 2.3000996112823486,
231
+ "learning_rate": 6.2e-05,
232
+ "loss": 1.6268,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.026221692491060787,
237
+ "grad_norm": 3.713061571121216,
238
+ "learning_rate": 6.400000000000001e-05,
239
+ "loss": 1.9121,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.027016289233214145,
244
+ "grad_norm": 2.776019811630249,
245
+ "learning_rate": 6.6e-05,
246
+ "loss": 1.817,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.027810885975367503,
251
+ "grad_norm": 2.564723491668701,
252
+ "learning_rate": 6.800000000000001e-05,
253
+ "loss": 1.9355,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.028605482717520857,
258
+ "grad_norm": 6.116189002990723,
259
+ "learning_rate": 7e-05,
260
+ "loss": 1.7766,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.029400079459674214,
265
+ "grad_norm": 2.6253204345703125,
266
+ "learning_rate": 7.2e-05,
267
+ "loss": 1.7565,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.030194676201827572,
272
+ "grad_norm": 2.706721544265747,
273
+ "learning_rate": 7.4e-05,
274
+ "loss": 1.9456,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.03098927294398093,
279
+ "grad_norm": 2.7343411445617676,
280
+ "learning_rate": 7.6e-05,
281
+ "loss": 1.6768,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.03178386968613429,
286
+ "grad_norm": 2.1730287075042725,
287
+ "learning_rate": 7.800000000000001e-05,
288
+ "loss": 1.4658,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.03257846642828764,
293
+ "grad_norm": 2.681889295578003,
294
+ "learning_rate": 8e-05,
295
+ "loss": 1.5583,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.033373063170441,
300
+ "grad_norm": 2.6841020584106445,
301
+ "learning_rate": 8.2e-05,
302
+ "loss": 1.6734,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.03416765991259436,
307
+ "grad_norm": 3.1267893314361572,
308
+ "learning_rate": 8.4e-05,
309
+ "loss": 1.6114,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.03496225665474772,
314
+ "grad_norm": 3.066925525665283,
315
+ "learning_rate": 8.6e-05,
316
+ "loss": 1.558,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.03575685339690107,
321
+ "grad_norm": 2.6647801399230957,
322
+ "learning_rate": 8.800000000000001e-05,
323
+ "loss": 1.4592,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.03655145013905443,
328
+ "grad_norm": 2.6715352535247803,
329
+ "learning_rate": 9e-05,
330
+ "loss": 1.4846,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.03734604688120779,
335
+ "grad_norm": 8.9569091796875,
336
+ "learning_rate": 9.200000000000001e-05,
337
+ "loss": 1.7494,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.03814064362336114,
342
+ "grad_norm": 2.7488503456115723,
343
+ "learning_rate": 9.4e-05,
344
+ "loss": 1.2653,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.038935240365514504,
349
+ "grad_norm": 2.520211696624756,
350
+ "learning_rate": 9.6e-05,
351
+ "loss": 1.2965,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.03972983710766786,
356
+ "grad_norm": 2.678025960922241,
357
+ "learning_rate": 9.8e-05,
358
+ "loss": 1.199,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.04052443384982122,
363
+ "grad_norm": 2.6799986362457275,
364
+ "learning_rate": 0.0001,
365
+ "loss": 1.2672,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.04131903059197457,
370
+ "grad_norm": 2.907582998275757,
371
+ "learning_rate": 0.00010200000000000001,
372
+ "loss": 1.3114,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.04211362733412793,
377
+ "grad_norm": 2.7622241973876953,
378
+ "learning_rate": 0.00010400000000000001,
379
+ "loss": 1.2173,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.04290822407628129,
384
+ "grad_norm": 3.829127550125122,
385
+ "learning_rate": 0.00010600000000000002,
386
+ "loss": 1.2657,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.04370282081843464,
391
+ "grad_norm": 4.464277267456055,
392
+ "learning_rate": 0.00010800000000000001,
393
+ "loss": 1.3206,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.044497417560588004,
398
+ "grad_norm": 2.5400142669677734,
399
+ "learning_rate": 0.00011000000000000002,
400
+ "loss": 1.1097,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.04529201430274136,
405
+ "grad_norm": 2.6496193408966064,
406
+ "learning_rate": 0.00011200000000000001,
407
+ "loss": 1.097,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.04608661104489471,
412
+ "grad_norm": 4.215746879577637,
413
+ "learning_rate": 0.00011399999999999999,
414
+ "loss": 1.1642,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.046881207787048074,
419
+ "grad_norm": 2.93621826171875,
420
+ "learning_rate": 0.000116,
421
+ "loss": 1.2385,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.04767580452920143,
426
+ "grad_norm": 10.44421672821045,
427
+ "learning_rate": 0.000118,
428
+ "loss": 1.1682,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.04847040127135479,
433
+ "grad_norm": 3.617307424545288,
434
+ "learning_rate": 0.00012,
435
+ "loss": 1.3271,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.04926499801350814,
440
+ "grad_norm": 2.5892326831817627,
441
+ "learning_rate": 0.000122,
442
+ "loss": 0.9714,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.050059594755661505,
447
+ "grad_norm": NaN,
448
+ "learning_rate": 0.000122,
449
+ "loss": 1.2764,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.05085419149781486,
454
+ "grad_norm": 2.9196863174438477,
455
+ "learning_rate": 0.000124,
456
+ "loss": 1.1406,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.05164878823996821,
461
+ "grad_norm": 4.006603717803955,
462
+ "learning_rate": 0.000126,
463
+ "loss": 0.9797,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.052443384982121574,
468
+ "grad_norm": 2.5575106143951416,
469
+ "learning_rate": 0.00012800000000000002,
470
+ "loss": 1.2092,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.05323798172427493,
475
+ "grad_norm": 3.1613786220550537,
476
+ "learning_rate": 0.00013000000000000002,
477
+ "loss": 1.2598,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.05403257846642829,
482
+ "grad_norm": 2.542789936065674,
483
+ "learning_rate": 0.000132,
484
+ "loss": 0.9497,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.054827175208581644,
489
+ "grad_norm": 2.4051780700683594,
490
+ "learning_rate": 0.000134,
491
+ "loss": 0.7992,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.055621771950735005,
496
+ "grad_norm": 51.893409729003906,
497
+ "learning_rate": 0.00013600000000000003,
498
+ "loss": 0.9683,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.05641636869288836,
503
+ "grad_norm": 4.105207920074463,
504
+ "learning_rate": 0.000138,
505
+ "loss": 1.0815,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.057210965435041714,
510
+ "grad_norm": 92.10639190673828,
511
+ "learning_rate": 0.00014,
512
+ "loss": 1.1767,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.058005562177195075,
517
+ "grad_norm": 2.4499878883361816,
518
+ "learning_rate": 0.000142,
519
+ "loss": 0.8912,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.05880015891934843,
524
+ "grad_norm": 2.4928042888641357,
525
+ "learning_rate": 0.000144,
526
+ "loss": 0.9457,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.05959475566150179,
531
+ "grad_norm": 2.761523485183716,
532
+ "learning_rate": 0.000146,
533
+ "loss": 0.9493,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.060389352403655144,
538
+ "grad_norm": 2.9320006370544434,
539
+ "learning_rate": 0.000148,
540
+ "loss": 0.9657,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.061183949145808506,
545
+ "grad_norm": 2.067227840423584,
546
+ "learning_rate": 0.00015000000000000001,
547
+ "loss": 0.8115,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.06197854588796186,
552
+ "grad_norm": 78.78492736816406,
553
+ "learning_rate": 0.000152,
554
+ "loss": 1.4676,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.06277314263011521,
559
+ "grad_norm": 2.335451364517212,
560
+ "learning_rate": 0.000154,
561
+ "loss": 0.9271,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.06356773937226858,
566
+ "grad_norm": 3.434222459793091,
567
+ "learning_rate": 0.00015600000000000002,
568
+ "loss": 0.8938,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.06436233611442194,
573
+ "grad_norm": 2.38944673538208,
574
+ "learning_rate": 0.00015800000000000002,
575
+ "loss": 0.9277,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.06515693285657528,
580
+ "grad_norm": 2.960742712020874,
581
+ "learning_rate": 0.00016,
582
+ "loss": 1.1237,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.06595152959872864,
587
+ "grad_norm": 2.1033873558044434,
588
+ "learning_rate": 0.000162,
589
+ "loss": 0.8095,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.066746126340882,
594
+ "grad_norm": 2.611531972885132,
595
+ "learning_rate": 0.000164,
596
+ "loss": 0.927,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.06754072308303535,
601
+ "grad_norm": 2.9163801670074463,
602
+ "learning_rate": 0.000166,
603
+ "loss": 0.8363,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.06833531982518871,
608
+ "grad_norm": 2.6492106914520264,
609
+ "learning_rate": 0.000168,
610
+ "loss": 0.9831,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.06912991656734208,
615
+ "grad_norm": 2.027588367462158,
616
+ "learning_rate": 0.00017,
617
+ "loss": 0.8676,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.06992451330949544,
622
+ "grad_norm": 2.7688043117523193,
623
+ "learning_rate": 0.000172,
624
+ "loss": 1.1266,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.07071911005164878,
629
+ "grad_norm": 2.4787685871124268,
630
+ "learning_rate": 0.000174,
631
+ "loss": 0.8832,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.07151370679380215,
636
+ "grad_norm": 5.127519130706787,
637
+ "learning_rate": 0.00017600000000000002,
638
+ "loss": 0.8945,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.0723083035359555,
643
+ "grad_norm": 3.4531705379486084,
644
+ "learning_rate": 0.00017800000000000002,
645
+ "loss": 1.1205,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.07310290027810885,
650
+ "grad_norm": 2.749129056930542,
651
+ "learning_rate": 0.00018,
652
+ "loss": 1.019,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.07389749702026222,
657
+ "grad_norm": Infinity,
658
+ "learning_rate": 0.00018,
659
+ "loss": 1.3832,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.07469209376241558,
664
+ "grad_norm": 2.6057441234588623,
665
+ "learning_rate": 0.000182,
666
+ "loss": 1.1318,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.07548669050456894,
671
+ "grad_norm": 4.503351211547852,
672
+ "learning_rate": 0.00018400000000000003,
673
+ "loss": 1.033,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.07628128724672228,
678
+ "grad_norm": 2.7054409980773926,
679
+ "learning_rate": 0.00018600000000000002,
680
+ "loss": 0.9466,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.07707588398887565,
685
+ "grad_norm": 2.1828339099884033,
686
+ "learning_rate": 0.000188,
687
+ "loss": 0.8253,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.07787048073102901,
692
+ "grad_norm": 2.062911033630371,
693
+ "learning_rate": 0.00019,
694
+ "loss": 0.8997,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.07866507747318235,
699
+ "grad_norm": 2.1747360229492188,
700
+ "learning_rate": 0.000192,
701
+ "loss": 0.928,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.07945967421533572,
706
+ "grad_norm": 2.3616063594818115,
707
+ "learning_rate": 0.000194,
708
+ "loss": 0.8595,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.08025427095748908,
713
+ "grad_norm": 2.007453203201294,
714
+ "learning_rate": 0.000196,
715
+ "loss": 0.9071,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.08104886769964244,
720
+ "grad_norm": 2.822878837585449,
721
+ "learning_rate": 0.00019800000000000002,
722
+ "loss": 1.1856,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.08184346444179579,
727
+ "grad_norm": 2.162837505340576,
728
+ "learning_rate": 0.0002,
729
+ "loss": 1.0198,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.08263806118394915,
734
+ "grad_norm": 2.004056453704834,
735
+ "learning_rate": 0.00019800000000000002,
736
+ "loss": 0.8352,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.08343265792610251,
741
+ "grad_norm": 2.5484063625335693,
742
+ "learning_rate": 0.000196,
743
+ "loss": 1.0226,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.08422725466825585,
748
+ "grad_norm": 2.2759130001068115,
749
+ "learning_rate": 0.000194,
750
+ "loss": 0.8884,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.08502185141040922,
755
+ "grad_norm": 2.4136946201324463,
756
+ "learning_rate": 0.000192,
757
+ "loss": 0.8374,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.08581644815256258,
762
+ "grad_norm": 2.8566195964813232,
763
+ "learning_rate": 0.00019,
764
+ "loss": 0.9112,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.08661104489471594,
769
+ "grad_norm": 2.241708755493164,
770
+ "learning_rate": 0.000188,
771
+ "loss": 0.8695,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.08740564163686929,
776
+ "grad_norm": 2.1674909591674805,
777
+ "learning_rate": 0.00018600000000000002,
778
+ "loss": 0.708,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.08820023837902265,
783
+ "grad_norm": 3.16097092628479,
784
+ "learning_rate": 0.00018400000000000003,
785
+ "loss": 1.0946,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.08899483512117601,
790
+ "grad_norm": 2.7531492710113525,
791
+ "learning_rate": 0.000182,
792
+ "loss": 0.8907,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.08978943186332936,
797
+ "grad_norm": 2.3830761909484863,
798
+ "learning_rate": 0.00018,
799
+ "loss": 0.9243,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.09058402860548272,
804
+ "grad_norm": 27.347421646118164,
805
+ "learning_rate": 0.00017800000000000002,
806
+ "loss": 1.0328,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.09137862534763608,
811
+ "grad_norm": 2.1043972969055176,
812
+ "learning_rate": 0.00017600000000000002,
813
+ "loss": 0.9195,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.09217322208978942,
818
+ "grad_norm": 1.9787133932113647,
819
+ "learning_rate": 0.000174,
820
+ "loss": 0.7395,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.09296781883194279,
825
+ "grad_norm": 2.395308256149292,
826
+ "learning_rate": 0.000172,
827
+ "loss": 1.0193,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.09376241557409615,
832
+ "grad_norm": 1.9864846467971802,
833
+ "learning_rate": 0.00017,
834
+ "loss": 0.948,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.09455701231624951,
839
+ "grad_norm": 2.823315382003784,
840
+ "learning_rate": 0.000168,
841
+ "loss": 1.0902,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.09535160905840286,
846
+ "grad_norm": 2.5823678970336914,
847
+ "learning_rate": 0.000166,
848
+ "loss": 1.0905,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.09614620580055622,
853
+ "grad_norm": 1.8948626518249512,
854
+ "learning_rate": 0.000164,
855
+ "loss": 0.9203,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.09694080254270958,
860
+ "grad_norm": 1.9721623659133911,
861
+ "learning_rate": 0.000162,
862
+ "loss": 0.9591,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.09773539928486293,
867
+ "grad_norm": 1.9776030778884888,
868
+ "learning_rate": 0.00016,
869
+ "loss": 0.9887,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.09852999602701629,
874
+ "grad_norm": 2.8131155967712402,
875
+ "learning_rate": 0.00015800000000000002,
876
+ "loss": 1.0197,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.09932459276916965,
881
+ "grad_norm": 2.0642547607421875,
882
+ "learning_rate": 0.00015600000000000002,
883
+ "loss": 0.9931,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.10011918951132301,
888
+ "grad_norm": 2.9410674571990967,
889
+ "learning_rate": 0.000154,
890
+ "loss": 1.3742,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.10091378625347636,
895
+ "grad_norm": 2.1221704483032227,
896
+ "learning_rate": 0.000152,
897
+ "loss": 1.0526,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.10170838299562972,
902
+ "grad_norm": 2.831902503967285,
903
+ "learning_rate": 0.00015000000000000001,
904
+ "loss": 0.8048,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.10250297973778308,
909
+ "grad_norm": 2.066681146621704,
910
+ "learning_rate": 0.000148,
911
+ "loss": 0.985,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.10329757647993643,
916
+ "grad_norm": 1.8252568244934082,
917
+ "learning_rate": 0.000146,
918
+ "loss": 0.7689,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.10409217322208979,
923
+ "grad_norm": 2.0231878757476807,
924
+ "learning_rate": 0.000144,
925
+ "loss": 1.0247,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.10488676996424315,
930
+ "grad_norm": 2.200442314147949,
931
+ "learning_rate": 0.000142,
932
+ "loss": 0.8775,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.10568136670639651,
937
+ "grad_norm": 1.7937211990356445,
938
+ "learning_rate": 0.00014,
939
+ "loss": 0.9357,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.10647596344854986,
944
+ "grad_norm": 1.685763955116272,
945
+ "learning_rate": 0.000138,
946
+ "loss": 0.8664,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.10727056019070322,
951
+ "grad_norm": 1.9033604860305786,
952
+ "learning_rate": 0.00013600000000000003,
953
+ "loss": 0.9793,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.10806515693285658,
958
+ "grad_norm": 1.8052781820297241,
959
+ "learning_rate": 0.000134,
960
+ "loss": 0.8154,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.10885975367500993,
965
+ "grad_norm": 2.400908946990967,
966
+ "learning_rate": 0.000132,
967
+ "loss": 0.9604,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.10965435041716329,
972
+ "grad_norm": 1.7619413137435913,
973
+ "learning_rate": 0.00013000000000000002,
974
+ "loss": 0.8187,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.11044894715931665,
979
+ "grad_norm": 1.8535854816436768,
980
+ "learning_rate": 0.00012800000000000002,
981
+ "loss": 0.9487,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.11124354390147001,
986
+ "grad_norm": 1.8936333656311035,
987
+ "learning_rate": 0.000126,
988
+ "loss": 0.9852,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.11203814064362336,
993
+ "grad_norm": 1.821515440940857,
994
+ "learning_rate": 0.000124,
995
+ "loss": 0.8442,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.11283273738577672,
1000
+ "grad_norm": 2.1713123321533203,
1001
+ "learning_rate": 0.000122,
1002
+ "loss": 1.1723,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.11362733412793008,
1007
+ "grad_norm": 1.6912201642990112,
1008
+ "learning_rate": 0.00012,
1009
+ "loss": 0.7486,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.11442193087008343,
1014
+ "grad_norm": 1.630624532699585,
1015
+ "learning_rate": 0.000118,
1016
+ "loss": 0.7462,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.11521652761223679,
1021
+ "grad_norm": 2.0852651596069336,
1022
+ "learning_rate": 0.000116,
1023
+ "loss": 0.7821,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.11601112435439015,
1028
+ "grad_norm": 1.5113400220870972,
1029
+ "learning_rate": 0.00011399999999999999,
1030
+ "loss": 0.7768,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.11680572109654351,
1035
+ "grad_norm": 1.9536205530166626,
1036
+ "learning_rate": 0.00011200000000000001,
1037
+ "loss": 0.9478,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.11760031783869686,
1042
+ "grad_norm": 1.8963311910629272,
1043
+ "learning_rate": 0.00011000000000000002,
1044
+ "loss": 0.9085,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.11839491458085022,
1049
+ "grad_norm": 1.8368561267852783,
1050
+ "learning_rate": 0.00010800000000000001,
1051
+ "loss": 0.757,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.11918951132300358,
1056
+ "grad_norm": 2.7951648235321045,
1057
+ "learning_rate": 0.00010600000000000002,
1058
+ "loss": 1.0677,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.11998410806515693,
1063
+ "grad_norm": 2.015962839126587,
1064
+ "learning_rate": 0.00010400000000000001,
1065
+ "loss": 0.7874,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.12077870480731029,
1070
+ "grad_norm": 2.661062479019165,
1071
+ "learning_rate": 0.00010200000000000001,
1072
+ "loss": 0.9311,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.12157330154946365,
1077
+ "grad_norm": 2.020232677459717,
1078
+ "learning_rate": 0.0001,
1079
+ "loss": 0.7958,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.12236789829161701,
1084
+ "grad_norm": 2.5150179862976074,
1085
+ "learning_rate": 9.8e-05,
1086
+ "loss": 0.8354,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.12316249503377036,
1091
+ "grad_norm": 1.65029776096344,
1092
+ "learning_rate": 9.6e-05,
1093
+ "loss": 0.8512,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.12395709177592372,
1098
+ "grad_norm": 2.004103183746338,
1099
+ "learning_rate": 9.4e-05,
1100
+ "loss": 0.7002,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.12475168851807708,
1105
+ "grad_norm": 2.198091506958008,
1106
+ "learning_rate": 9.200000000000001e-05,
1107
+ "loss": 0.8539,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.12554628526023043,
1112
+ "grad_norm": 2.1458988189697266,
1113
+ "learning_rate": 9e-05,
1114
+ "loss": 1.1292,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.1263408820023838,
1119
+ "grad_norm": 1.7759689092636108,
1120
+ "learning_rate": 8.800000000000001e-05,
1121
+ "loss": 0.8792,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.12713547874453715,
1126
+ "grad_norm": 2.0215320587158203,
1127
+ "learning_rate": 8.6e-05,
1128
+ "loss": 0.9206,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.1279300754866905,
1133
+ "grad_norm": 2.324572801589966,
1134
+ "learning_rate": 8.4e-05,
1135
+ "loss": 1.0041,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.12872467222884387,
1140
+ "grad_norm": 2.3949570655822754,
1141
+ "learning_rate": 8.2e-05,
1142
+ "loss": 0.7894,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.12951926897099722,
1147
+ "grad_norm": 1.8736156225204468,
1148
+ "learning_rate": 8e-05,
1149
+ "loss": 0.8928,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.13031386571315057,
1154
+ "grad_norm": 2.373562812805176,
1155
+ "learning_rate": 7.800000000000001e-05,
1156
+ "loss": 0.8739,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.13110846245530394,
1161
+ "grad_norm": 1.6126917600631714,
1162
+ "learning_rate": 7.6e-05,
1163
+ "loss": 0.6292,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.1319030591974573,
1168
+ "grad_norm": 2.6151697635650635,
1169
+ "learning_rate": 7.4e-05,
1170
+ "loss": 1.2176,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.13269765593961064,
1175
+ "grad_norm": 1.883436918258667,
1176
+ "learning_rate": 7.2e-05,
1177
+ "loss": 0.7664,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.133492252681764,
1182
+ "grad_norm": 2.2091007232666016,
1183
+ "learning_rate": 7e-05,
1184
+ "loss": 0.9501,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.13428684942391736,
1189
+ "grad_norm": 1.903889775276184,
1190
+ "learning_rate": 6.800000000000001e-05,
1191
+ "loss": 0.9322,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.1350814461660707,
1196
+ "grad_norm": 1.9040536880493164,
1197
+ "learning_rate": 6.6e-05,
1198
+ "loss": 0.851,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.13587604290822408,
1203
+ "grad_norm": 1.7239336967468262,
1204
+ "learning_rate": 6.400000000000001e-05,
1205
+ "loss": 0.9033,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.13667063965037743,
1210
+ "grad_norm": 3.3629558086395264,
1211
+ "learning_rate": 6.2e-05,
1212
+ "loss": 0.918,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.1374652363925308,
1217
+ "grad_norm": 1.9918290376663208,
1218
+ "learning_rate": 6e-05,
1219
+ "loss": 0.8825,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.13825983313468415,
1224
+ "grad_norm": 2.3540871143341064,
1225
+ "learning_rate": 5.8e-05,
1226
+ "loss": 0.6484,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.1390544298768375,
1231
+ "grad_norm": 2.2806777954101562,
1232
+ "learning_rate": 5.6000000000000006e-05,
1233
+ "loss": 0.7137,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.13984902661899087,
1238
+ "grad_norm": 2.21384334564209,
1239
+ "learning_rate": 5.4000000000000005e-05,
1240
+ "loss": 0.5965,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.14064362336114422,
1245
+ "grad_norm": 1.9977487325668335,
1246
+ "learning_rate": 5.2000000000000004e-05,
1247
+ "loss": 0.7671,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.14143822010329757,
1252
+ "grad_norm": 31.215999603271484,
1253
+ "learning_rate": 5e-05,
1254
+ "loss": 0.9116,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.14223281684545094,
1259
+ "grad_norm": 2.2257730960845947,
1260
+ "learning_rate": 4.8e-05,
1261
+ "loss": 0.8838,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.1430274135876043,
1266
+ "grad_norm": 2.9200854301452637,
1267
+ "learning_rate": 4.600000000000001e-05,
1268
+ "loss": 0.9615,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.14382201032975764,
1273
+ "grad_norm": 2.2704315185546875,
1274
+ "learning_rate": 4.4000000000000006e-05,
1275
+ "loss": 1.0132,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.144616607071911,
1280
+ "grad_norm": 2.058189868927002,
1281
+ "learning_rate": 4.2e-05,
1282
+ "loss": 0.8201,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.14541120381406436,
1287
+ "grad_norm": 1.7903186082839966,
1288
+ "learning_rate": 4e-05,
1289
+ "loss": 0.7128,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.1462058005562177,
1294
+ "grad_norm": 1.9608381986618042,
1295
+ "learning_rate": 3.8e-05,
1296
+ "loss": 0.8236,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.14700039729837108,
1301
+ "grad_norm": 2.1937220096588135,
1302
+ "learning_rate": 3.6e-05,
1303
+ "loss": 0.8442,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.14779499404052443,
1308
+ "grad_norm": 2.047407627105713,
1309
+ "learning_rate": 3.4000000000000007e-05,
1310
+ "loss": 0.966,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.14858959078267778,
1315
+ "grad_norm": 2.0216119289398193,
1316
+ "learning_rate": 3.2000000000000005e-05,
1317
+ "loss": 0.9564,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.14938418752483115,
1322
+ "grad_norm": 1.629753589630127,
1323
+ "learning_rate": 3e-05,
1324
+ "loss": 0.6504,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.1501787842669845,
1329
+ "grad_norm": 1.7381154298782349,
1330
+ "learning_rate": 2.8000000000000003e-05,
1331
+ "loss": 0.8346,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.15097338100913787,
1336
+ "grad_norm": 2.1300833225250244,
1337
+ "learning_rate": 2.6000000000000002e-05,
1338
+ "loss": 0.8631,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.15176797775129122,
1343
+ "grad_norm": 1.8977206945419312,
1344
+ "learning_rate": 2.4e-05,
1345
+ "loss": 0.8653,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.15256257449344457,
1350
+ "grad_norm": 1.7362009286880493,
1351
+ "learning_rate": 2.2000000000000003e-05,
1352
+ "loss": 0.8278,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.15335717123559794,
1357
+ "grad_norm": 1.838982105255127,
1358
+ "learning_rate": 2e-05,
1359
+ "loss": 0.6521,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.1541517679777513,
1364
+ "grad_norm": 2.4685189723968506,
1365
+ "learning_rate": 1.8e-05,
1366
+ "loss": 0.9639,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.15494636471990464,
1371
+ "grad_norm": 1.8960801362991333,
1372
+ "learning_rate": 1.6000000000000003e-05,
1373
+ "loss": 0.7338,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.15574096146205801,
1378
+ "grad_norm": 2.139636993408203,
1379
+ "learning_rate": 1.4000000000000001e-05,
1380
+ "loss": 0.6774,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.15653555820421136,
1385
+ "grad_norm": 2.0349552631378174,
1386
+ "learning_rate": 1.2e-05,
1387
+ "loss": 0.8435,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.1573301549463647,
1392
+ "grad_norm": 1.5157055854797363,
1393
+ "learning_rate": 1e-05,
1394
+ "loss": 0.7087,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.15812475168851808,
1399
+ "grad_norm": 2.498692035675049,
1400
+ "learning_rate": 8.000000000000001e-06,
1401
+ "loss": 1.0298,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.15891934843067143,
1406
+ "grad_norm": 1.7967320680618286,
1407
+ "learning_rate": 6e-06,
1408
+ "loss": 0.7717,
1409
+ "step": 200
1410
+ }
1411
+ ],
1412
+ "logging_steps": 1,
1413
+ "max_steps": 200,
1414
+ "num_input_tokens_seen": 0,
1415
+ "num_train_epochs": 1,
1416
+ "save_steps": 500,
1417
+ "stateful_callbacks": {
1418
+ "TrainerControl": {
1419
+ "args": {
1420
+ "should_epoch_stop": false,
1421
+ "should_evaluate": false,
1422
+ "should_log": false,
1423
+ "should_save": true,
1424
+ "should_training_stop": true
1425
+ },
1426
+ "attributes": {}
1427
+ }
1428
+ },
1429
+ "total_flos": 2473157095243776.0,
1430
+ "train_batch_size": 1,
1431
+ "trial_name": null,
1432
+ "trial_params": null
1433
+ }
checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:098cc62850a9422967145f5b3c4822dcaa7f739cabac8d97cbe7d3678e81010e
3
+ size 5176
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:098cc62850a9422967145f5b3c4822dcaa7f739cabac8d97cbe7d3678e81010e
3
+ size 5176