Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1708.65 +/- 310.52
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e1f1824cb907ff7af06082bead3b6282b99e051bc4ed1e8a65d780d0a0061bb
|
3 |
+
size 129354
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5673ad3520>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5673ad35b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5673ad3640>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5673ad36d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5673ad3760>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5673ad37f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5673ad3880>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5673ad3910>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5673ad39a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5673ad3a30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5673ad3ac0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5673ad3b50>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5673ac7b00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675550870187539874,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL3NlYmFzL21pbmljb25kYTMvZW52cy9STC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL3NlYmFzL21pbmljb25kYTMvZW52cy9STC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALJUVL3IuIo/SSaPPnnXWT8EfOe/w4g8vwX3vD5Mi0K+P7IOP2JEv7xOcMk+SujhvyMkfr9L9hQ/WmYhvrgFgT8wlHa/v4CQPm8++j7uj9i/EzF8PhRWpT9qQwi9S9q7PwLIZj+vzgo/0GMIP8Npjb+l+K4+2aD1vhtRvz5WwaY/xhZWvbIxDb0i4jE+Z0CNvsKICT8H8YS+280lPy3/5D5ohxw/uP8HwL4OrT0lDe8+p6S5viLE/L/vTB8+KYG9P4s6mT3dPR2/D/YEvy6J4TwCyGY/dBHsv9BjCD/DaY2/+wRDPcuA2j4/iQk/+11yP9y7AEB+Kv89QBd6v6y/db76/ps+ILHQv/SB7r4NWBQ+9GVRP5wymz4jeGg/x4yePB1GuT+AWEK8UP87v96iu76lToc+Q+YEwP1/lD+kY++8vPyNv6/OCj/QYwg/3bdnP4ysmb7PtaY+S1wMP3epcT+ML2+/jWJ3PvworD0fD1q9IxTPPe5dtb8Va/0933g6P3QaAb9+5BzAUoBLP+xDx73CPhK/ETIqwNwvlT7FCMU/vXj6viiF8L85ZQS/VY7NugLIZj90Eey/0GMIP8Npjb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACXXj02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/0QOPgAAAAB54fy/AAAAAF8Iyj0AAAAA9RTzPwAAAAC2+TY9AAAAAO8Z/z8AAAAAkczlvQAAAAAMiPS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAslYHNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNdIp7wAAAAAiun7vwAAAAA1Ru88AAAAAPHL8z8AAAAALXnWPQAAAABDP+8/AAAAAPfa/z0AAAAAoYLpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3d1zYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICmWRE7AAAAAKh59L8AAAAA1JTSPQAAAABIHvk/AAAAABzHoT0AAAAAcPD/PwAAAABL5829AAAAAEiq4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEyMi2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1yqZPAAAAADG9fW/AAAAAPB/Cb4AAAAAo/70PwAAAAB1yWY8AAAAAD/F/D8AAAAA1t/zPQAAAAA1y+O/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ4V+QgcLjSMAWyUTegDjAF0lEdAme6N7jT8YXV9lChoBkdAntvglOXVsmgHTegDaAhHQJnu2QzUI9l1fZQoaAZHQKBSZXvphWpoB03oA2gIR0CZ89VdHDrJdX2UKGgGR0CgCr56MR6GaAdN6ANoCEdAmfZokzGgjHV9lChoBkdAnqOin1nM+2gHTegDaAhHQJn8qpwS8J51fZQoaAZHQKARUFW4mTloB03oA2gIR0CZ/PWDHwPRdX2UKGgGR0CgSMc9GI9DaAdN6ANoCEdAmgHsV1wHaHV9lChoBkdAnnByWE9MbmgHTegDaAhHQJoEgynDR+l1fZQoaAZHQJ2i4MG5c1RoB03oA2gIR0CaCssO5J9RdX2UKGgGR0CehrHymQ8waAdN6ANoCEdAmgsV5GBnSXV9lChoBkdAnlwKnzg/DGgHTegDaAhHQJoQDKwIMSd1fZQoaAZHQJ0Lz9aUzKtoB03oA2gIR0CaEp/wiJO4dX2UKGgGR0Cf/6H58BuGaAdN6ANoCEdAmhjaGHpKSXV9lChoBkdAnqkBt+CsfmgHTegDaAhHQJoZJLteD4B1fZQoaAZHQKA+pjCHh0hoB03oA2gIR0CaHhVHFxXGdX2UKGgGR0CgziGxD9fkaAdN6ANoCEdAmiClQEZBLXV9lChoBkdAoNFAPRRdhWgHTegDaAhHQJom1aV2Rq51fZQoaAZHQJvHbaYeDFtoB03oA2gIR0CaJx++ueSTdX2UKGgGR0Cg7DFyJbdKaAdN6ANoCEdAmiwQOOKfnXV9lChoBkdAoHPMEovzv2gHTegDaAhHQJouoURFqi51fZQoaAZHQKEBc7SRbKRoB03oA2gIR0CaNNjU/fO2dX2UKGgGR0CfABm9QGfPaAdN6ANoCEdAmjUjnvDxb3V9lChoBkdAoBGmWv8qF2gHTegDaAhHQJo6GhVU+9t1fZQoaAZHQJ9hBZTyauxoB03oA2gIR0CaPK8Q7LdOdX2UKGgGR0CeybMpPRAsaAdN6ANoCEdAmkLsYMvysnV9lChoBkdAnTCmTX8O1GgHTegDaAhHQJpDNuO0b991fZQoaAZHQJ5RL5+H8CRoB03oA2gIR0CaSCZ3cHnmdX2UKGgGR0CgjavTw2ETaAdN6ANoCEdAmkq0idJ8OXV9lChoBkdAnmm8mfGuLmgHTegDaAhHQJpQ7eP7vXt1fZQoaAZHQJ4gBzV+Zw5oB03oA2gIR0CaUThuwX67dX2UKGgGR0CbfPysCDEnaAdN6ANoCEdAmlY1kDp1R3V9lChoBkdAnQK4dU83dmgHTegDaAhHQJpYyP5pJwt1fZQoaAZHQJ0sP0RODapoB03oA2gIR0CaXv8n/kvLdX2UKGgGR0Ca6YdRR/EwaAdN6ANoCEdAml9JA+pwTHV9lChoBkdAnALqFqSHM2gHTegDaAhHQJpkOCYkVvd1fZQoaAZHQJ80uJemelNoB03oA2gIR0CaZsaxoqTbdX2UKGgGR0CfnyhScbzcaAdN6ANoCEdAmmz2ycCo0nV9lChoBkdAnsaHKSxJNGgHTegDaAhHQJptQU0vXbx1fZQoaAZHQJ7lVRHf/FRoB03oA2gIR0Caci1fE4vOdX2UKGgGR0Cbj7o+OfdzaAdN6ANoCEdAmnS8FEAo5XV9lChoBkdAmzCOy3Td+GgHTegDaAhHQJp65vAGjbl1fZQoaAZHQJ+pxvKlpGpoB03oA2gIR0CaezD3/PxAdX2UKGgGR0CfPpm7aqS6aAdN6ANoCEdAmoAbyc0+DHV9lChoBkdAn8NhqTKT0WgHTegDaAhHQJqCrjn3cpN1fZQoaAZHQJ8WPU9ZA6doB03oA2gIR0CaiOOZLIxQdX2UKGgGR0Cg3AhAWzniaAdN6ANoCEdAmokt+b3GoHV9lChoBkdAn7jm/336AWgHTegDaAhHQJqOITXarWB1fZQoaAZHQJylU29+PR1oB03oA2gIR0CakLQcghbGdX2UKGgGR0CfBrtcv/R3aAdN6ANoCEdAmpbiup0fYHV9lChoBkdAmxbjASFoMGgHTegDaAhHQJqXLicXm/51fZQoaAZHQKBIxz6rNnpoB03oA2gIR0CanBlWOp84dX2UKGgGR0CdVyzY287IaAdN6ANoCEdAmp6nBpHqeXV9lChoBkdAmok+14Pf9GgHTegDaAhHQJqk1Dc/MW51fZQoaAZHQJ/x0xL0z0poB03oA2gIR0CapR5LRKHxdX2UKGgGR0CcVHDe0ojOaAdN6ANoCEdAmqoMfzSThnV9lChoBkdAoE2j1yvLYGgHTegDaAhHQJqsnYHxBmh1fZQoaAZHQJ9x+8Empl1oB03oA2gIR0CastNYbKigdX2UKGgGR0CZ3MgDzRQaaAdN6ANoCEdAmrMdxhlUZXV9lChoBkdAm/6b+98JD2gHTegDaAhHQJq4EVLzwtt1fZQoaAZHQJp+zq0MPSVoB03oA2gIR0CauqH7xd6cdX2UKGgGR0CcirkauOjqaAdN6ANoCEdAmsDW0E5hjXV9lChoBkdAnyMlmz0HyGgHTegDaAhHQJrBIVHnU2F1fZQoaAZHQJ2wkG+sYEZoB03oA2gIR0CaxhNBWxQjdX2UKGgGR0CeadDZlFtsaAdN6ANoCEdAmsihWPtD2XV9lChoBkdAnVQ9IbwSamgHTegDaAhHQJrO32rXDm91fZQoaAZHQJ9oGXnhbW5oB03oA2gIR0Cazymp2ll9dX2UKGgGR0CfvFx8UmD2aAdN6ANoCEdAmtQbqY7aI3V9lChoBkdAmvo9z8xbjmgHTegDaAhHQJrWrrs0HhV1fZQoaAZHQJ5rwZAIIGBoB03oA2gIR0Ca3Ok/8l5XdX2UKGgGR0CbYcT238XOaAdN6ANoCEdAmt00AT7EYXV9lChoBkdAnT0G3F1jiGgHTegDaAhHQJriKZ+hGpd1fZQoaAZHQJ8hdm7J4jdoB03oA2gIR0Ca5Lr8zhxYdX2UKGgGR0CfBS7q6e5GaAdN6ANoCEdAmuryeI2wV3V9lChoBkdAm+uQlnh86WgHTegDaAhHQJrrPHEMspZ1fZQoaAZHQJ+PmlJpWWBoB03oA2gIR0Ca8CeenQ6ZdX2UKGgGR0CeJOxMWXTmaAdN6ANoCEdAmvK3yqdYn3V9lChoBkdAnZACQtBfKWgHTegDaAhHQJr45vo/zJ91fZQoaAZHQJ/vbrD63y9oB03oA2gIR0Ca+TDP4VRDdX2UKGgGR0Ce4FTb349HaAdN6ANoCEdAmv4eS8rZrnV9lChoBkdAnzBHbAUL2GgHTegDaAhHQJsArCvX9R91fZQoaAZHQJ4j141P3ztoB03oA2gIR0CbBt8LronsdX2UKGgGR0CfbOusLfDUaAdN6ANoCEdAmwcpiuuA7XV9lChoBkdAnlLeDJ2dNGgHTegDaAhHQJsMFbFCLMt1fZQoaAZHQJ7gWz+m3vxoB03oA2gIR0CbDqH93r2QdX2UKGgGR0CfCwTMJQchaAdN6ANoCEdAmxTMmfGuLnV9lChoBkdAnR7AyVObiWgHTegDaAhHQJsVFpWV/tp1fZQoaAZHQJwJDesPrfNoB03oA2gIR0CbGgAiV0LddX2UKGgGR0CeRF+/gzguaAdN6ANoCEdAmxyMSXdCV3V9lChoBkdAnUN6WszVMGgHTegDaAhHQJsivM4cWCV1fZQoaAZHQJ76scMmWt5oB03oA2gIR0CbIwa1kUbldX2UKGgGR0CdG6zZpSJkaAdN6ANoCEdAmyfzSgGr0nV9lChoBkdAnQg9MK1G9mgHTegDaAhHQJsqgRtgrpd1fZQoaAZHQJ1ns7CBPKxoB03oA2gIR0CbMKiPyTY/dX2UKGgGR0CeNVKxLTQWaAdN6ANoCEdAmzDzP0I1L3V9lChoBkdAnuVtPci4a2gHTegDaAhHQJs14Ttb9qF1fZQoaAZHQJw1pm7J4jdoB03oA2gIR0CbOHPhhpg1dX2UKGgGR0CfOj21D0DmaAdN6ANoCEdAmz6uTFERa3V9lChoBkdAnAiXk5p8GGgHTegDaAhHQJs++ZBsyi51fZQoaAZHQJPxhyeZof1oB03oA2gIR0CbQ++r2g3+dX2UKGgGR0CdIOllK9PDaAdN6ANoCEdAm0aEgGKQ73VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57e189a6ab1021c028beeb65f52c2c6589e82be3e62f45805260f4096e09bdff
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0df3612173b2debc7dacdba2b0ea5317797a44174e35e5bee77c909a1d2c084f
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.4.0-135-generic-x86_64-with-glibc2.31 # 152-Ubuntu SMP Wed Nov 23 20:19:22 UTC 2022
|
2 |
+
- Python: 3.10.9
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5673ad3520>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5673ad35b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5673ad3640>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5673ad36d0>", "_build": "<function ActorCriticPolicy._build at 0x7f5673ad3760>", "forward": "<function ActorCriticPolicy.forward at 0x7f5673ad37f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5673ad3880>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5673ad3910>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5673ad39a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5673ad3a30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5673ad3ac0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5673ad3b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5673ac7b00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675550870187539874, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL3NlYmFzL21pbmljb25kYTMvZW52cy9STC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL3NlYmFzL21pbmljb25kYTMvZW52cy9STC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALJUVL3IuIo/SSaPPnnXWT8EfOe/w4g8vwX3vD5Mi0K+P7IOP2JEv7xOcMk+SujhvyMkfr9L9hQ/WmYhvrgFgT8wlHa/v4CQPm8++j7uj9i/EzF8PhRWpT9qQwi9S9q7PwLIZj+vzgo/0GMIP8Npjb+l+K4+2aD1vhtRvz5WwaY/xhZWvbIxDb0i4jE+Z0CNvsKICT8H8YS+280lPy3/5D5ohxw/uP8HwL4OrT0lDe8+p6S5viLE/L/vTB8+KYG9P4s6mT3dPR2/D/YEvy6J4TwCyGY/dBHsv9BjCD/DaY2/+wRDPcuA2j4/iQk/+11yP9y7AEB+Kv89QBd6v6y/db76/ps+ILHQv/SB7r4NWBQ+9GVRP5wymz4jeGg/x4yePB1GuT+AWEK8UP87v96iu76lToc+Q+YEwP1/lD+kY++8vPyNv6/OCj/QYwg/3bdnP4ysmb7PtaY+S1wMP3epcT+ML2+/jWJ3PvworD0fD1q9IxTPPe5dtb8Va/0933g6P3QaAb9+5BzAUoBLP+xDx73CPhK/ETIqwNwvlT7FCMU/vXj6viiF8L85ZQS/VY7NugLIZj90Eey/0GMIP8Npjb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACXXj02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/0QOPgAAAAB54fy/AAAAAF8Iyj0AAAAA9RTzPwAAAAC2+TY9AAAAAO8Z/z8AAAAAkczlvQAAAAAMiPS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAslYHNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNdIp7wAAAAAiun7vwAAAAA1Ru88AAAAAPHL8z8AAAAALXnWPQAAAABDP+8/AAAAAPfa/z0AAAAAoYLpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3d1zYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICmWRE7AAAAAKh59L8AAAAA1JTSPQAAAABIHvk/AAAAABzHoT0AAAAAcPD/PwAAAABL5829AAAAAEiq4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEyMi2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1yqZPAAAAADG9fW/AAAAAPB/Cb4AAAAAo/70PwAAAAB1yWY8AAAAAD/F/D8AAAAA1t/zPQAAAAA1y+O/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ4V+QgcLjSMAWyUTegDjAF0lEdAme6N7jT8YXV9lChoBkdAntvglOXVsmgHTegDaAhHQJnu2QzUI9l1fZQoaAZHQKBSZXvphWpoB03oA2gIR0CZ89VdHDrJdX2UKGgGR0CgCr56MR6GaAdN6ANoCEdAmfZokzGgjHV9lChoBkdAnqOin1nM+2gHTegDaAhHQJn8qpwS8J51fZQoaAZHQKARUFW4mTloB03oA2gIR0CZ/PWDHwPRdX2UKGgGR0CgSMc9GI9DaAdN6ANoCEdAmgHsV1wHaHV9lChoBkdAnnByWE9MbmgHTegDaAhHQJoEgynDR+l1fZQoaAZHQJ2i4MG5c1RoB03oA2gIR0CaCssO5J9RdX2UKGgGR0CehrHymQ8waAdN6ANoCEdAmgsV5GBnSXV9lChoBkdAnlwKnzg/DGgHTegDaAhHQJoQDKwIMSd1fZQoaAZHQJ0Lz9aUzKtoB03oA2gIR0CaEp/wiJO4dX2UKGgGR0Cf/6H58BuGaAdN6ANoCEdAmhjaGHpKSXV9lChoBkdAnqkBt+CsfmgHTegDaAhHQJoZJLteD4B1fZQoaAZHQKA+pjCHh0hoB03oA2gIR0CaHhVHFxXGdX2UKGgGR0CgziGxD9fkaAdN6ANoCEdAmiClQEZBLXV9lChoBkdAoNFAPRRdhWgHTegDaAhHQJom1aV2Rq51fZQoaAZHQJvHbaYeDFtoB03oA2gIR0CaJx++ueSTdX2UKGgGR0Cg7DFyJbdKaAdN6ANoCEdAmiwQOOKfnXV9lChoBkdAoHPMEovzv2gHTegDaAhHQJouoURFqi51fZQoaAZHQKEBc7SRbKRoB03oA2gIR0CaNNjU/fO2dX2UKGgGR0CfABm9QGfPaAdN6ANoCEdAmjUjnvDxb3V9lChoBkdAoBGmWv8qF2gHTegDaAhHQJo6GhVU+9t1fZQoaAZHQJ9hBZTyauxoB03oA2gIR0CaPK8Q7LdOdX2UKGgGR0CeybMpPRAsaAdN6ANoCEdAmkLsYMvysnV9lChoBkdAnTCmTX8O1GgHTegDaAhHQJpDNuO0b991fZQoaAZHQJ5RL5+H8CRoB03oA2gIR0CaSCZ3cHnmdX2UKGgGR0CgjavTw2ETaAdN6ANoCEdAmkq0idJ8OXV9lChoBkdAnmm8mfGuLmgHTegDaAhHQJpQ7eP7vXt1fZQoaAZHQJ4gBzV+Zw5oB03oA2gIR0CaUThuwX67dX2UKGgGR0CbfPysCDEnaAdN6ANoCEdAmlY1kDp1R3V9lChoBkdAnQK4dU83dmgHTegDaAhHQJpYyP5pJwt1fZQoaAZHQJ0sP0RODapoB03oA2gIR0CaXv8n/kvLdX2UKGgGR0Ca6YdRR/EwaAdN6ANoCEdAml9JA+pwTHV9lChoBkdAnALqFqSHM2gHTegDaAhHQJpkOCYkVvd1fZQoaAZHQJ80uJemelNoB03oA2gIR0CaZsaxoqTbdX2UKGgGR0CfnyhScbzcaAdN6ANoCEdAmmz2ycCo0nV9lChoBkdAnsaHKSxJNGgHTegDaAhHQJptQU0vXbx1fZQoaAZHQJ7lVRHf/FRoB03oA2gIR0Caci1fE4vOdX2UKGgGR0Cbj7o+OfdzaAdN6ANoCEdAmnS8FEAo5XV9lChoBkdAmzCOy3Td+GgHTegDaAhHQJp65vAGjbl1fZQoaAZHQJ+pxvKlpGpoB03oA2gIR0CaezD3/PxAdX2UKGgGR0CfPpm7aqS6aAdN6ANoCEdAmoAbyc0+DHV9lChoBkdAn8NhqTKT0WgHTegDaAhHQJqCrjn3cpN1fZQoaAZHQJ8WPU9ZA6doB03oA2gIR0CaiOOZLIxQdX2UKGgGR0Cg3AhAWzniaAdN6ANoCEdAmokt+b3GoHV9lChoBkdAn7jm/336AWgHTegDaAhHQJqOITXarWB1fZQoaAZHQJylU29+PR1oB03oA2gIR0CakLQcghbGdX2UKGgGR0CfBrtcv/R3aAdN6ANoCEdAmpbiup0fYHV9lChoBkdAmxbjASFoMGgHTegDaAhHQJqXLicXm/51fZQoaAZHQKBIxz6rNnpoB03oA2gIR0CanBlWOp84dX2UKGgGR0CdVyzY287IaAdN6ANoCEdAmp6nBpHqeXV9lChoBkdAmok+14Pf9GgHTegDaAhHQJqk1Dc/MW51fZQoaAZHQJ/x0xL0z0poB03oA2gIR0CapR5LRKHxdX2UKGgGR0CcVHDe0ojOaAdN6ANoCEdAmqoMfzSThnV9lChoBkdAoE2j1yvLYGgHTegDaAhHQJqsnYHxBmh1fZQoaAZHQJ9x+8Empl1oB03oA2gIR0CastNYbKigdX2UKGgGR0CZ3MgDzRQaaAdN6ANoCEdAmrMdxhlUZXV9lChoBkdAm/6b+98JD2gHTegDaAhHQJq4EVLzwtt1fZQoaAZHQJp+zq0MPSVoB03oA2gIR0CauqH7xd6cdX2UKGgGR0CcirkauOjqaAdN6ANoCEdAmsDW0E5hjXV9lChoBkdAnyMlmz0HyGgHTegDaAhHQJrBIVHnU2F1fZQoaAZHQJ2wkG+sYEZoB03oA2gIR0CaxhNBWxQjdX2UKGgGR0CeadDZlFtsaAdN6ANoCEdAmsihWPtD2XV9lChoBkdAnVQ9IbwSamgHTegDaAhHQJrO32rXDm91fZQoaAZHQJ9oGXnhbW5oB03oA2gIR0Cazymp2ll9dX2UKGgGR0CfvFx8UmD2aAdN6ANoCEdAmtQbqY7aI3V9lChoBkdAmvo9z8xbjmgHTegDaAhHQJrWrrs0HhV1fZQoaAZHQJ5rwZAIIGBoB03oA2gIR0Ca3Ok/8l5XdX2UKGgGR0CbYcT238XOaAdN6ANoCEdAmt00AT7EYXV9lChoBkdAnT0G3F1jiGgHTegDaAhHQJriKZ+hGpd1fZQoaAZHQJ8hdm7J4jdoB03oA2gIR0Ca5Lr8zhxYdX2UKGgGR0CfBS7q6e5GaAdN6ANoCEdAmuryeI2wV3V9lChoBkdAm+uQlnh86WgHTegDaAhHQJrrPHEMspZ1fZQoaAZHQJ+PmlJpWWBoB03oA2gIR0Ca8CeenQ6ZdX2UKGgGR0CeJOxMWXTmaAdN6ANoCEdAmvK3yqdYn3V9lChoBkdAnZACQtBfKWgHTegDaAhHQJr45vo/zJ91fZQoaAZHQJ/vbrD63y9oB03oA2gIR0Ca+TDP4VRDdX2UKGgGR0Ce4FTb349HaAdN6ANoCEdAmv4eS8rZrnV9lChoBkdAnzBHbAUL2GgHTegDaAhHQJsArCvX9R91fZQoaAZHQJ4j141P3ztoB03oA2gIR0CbBt8LronsdX2UKGgGR0CfbOusLfDUaAdN6ANoCEdAmwcpiuuA7XV9lChoBkdAnlLeDJ2dNGgHTegDaAhHQJsMFbFCLMt1fZQoaAZHQJ7gWz+m3vxoB03oA2gIR0CbDqH93r2QdX2UKGgGR0CfCwTMJQchaAdN6ANoCEdAmxTMmfGuLnV9lChoBkdAnR7AyVObiWgHTegDaAhHQJsVFpWV/tp1fZQoaAZHQJwJDesPrfNoB03oA2gIR0CbGgAiV0LddX2UKGgGR0CeRF+/gzguaAdN6ANoCEdAmxyMSXdCV3V9lChoBkdAnUN6WszVMGgHTegDaAhHQJsivM4cWCV1fZQoaAZHQJ76scMmWt5oB03oA2gIR0CbIwa1kUbldX2UKGgGR0CdG6zZpSJkaAdN6ANoCEdAmyfzSgGr0nV9lChoBkdAnQg9MK1G9mgHTegDaAhHQJsqgRtgrpd1fZQoaAZHQJ1ns7CBPKxoB03oA2gIR0CbMKiPyTY/dX2UKGgGR0CeNVKxLTQWaAdN6ANoCEdAmzDzP0I1L3V9lChoBkdAnuVtPci4a2gHTegDaAhHQJs14Ttb9qF1fZQoaAZHQJw1pm7J4jdoB03oA2gIR0CbOHPhhpg1dX2UKGgGR0CfOj21D0DmaAdN6ANoCEdAmz6uTFERa3V9lChoBkdAnAiXk5p8GGgHTegDaAhHQJs++ZBsyi51fZQoaAZHQJPxhyeZof1oB03oA2gIR0CbQ++r2g3+dX2UKGgGR0CdIOllK9PDaAdN6ANoCEdAm0aEgGKQ73VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.0-135-generic-x86_64-with-glibc2.31 # 152-Ubuntu SMP Wed Nov 23 20:19:22 UTC 2022", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a875ad8aa952d24aa6d3868b8468ca56b7272986f0ab7cbed672edb846094c6e
|
3 |
+
size 1014124
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1708.650547663495, "std_reward": 310.52498064921014, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-05T00:17:18.524158"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06bcc1d2ccce6f5ff4eeb2a88dd12ec2f4609266d9b1cc3fb3fb2a68bf0ed0ae
|
3 |
+
size 2136
|