jphme commited on
Commit
6f3406d
1 Parent(s): 554d18a

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -8,7 +8,7 @@ tags:
8
 
9
  ---
10
 
11
- # ellamind/e5small_sgb_aktg_bmf_experimental
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
@@ -28,7 +28,7 @@ Then you can use the model like this:
28
  from sentence_transformers import SentenceTransformer
29
  sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
- model = SentenceTransformer('ellamind/e5small_sgb_aktg_bmf_experimental')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
@@ -39,7 +39,7 @@ print(embeddings)
39
 
40
  <!--- Describe how your model was evaluated -->
41
 
42
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ellamind/e5small_sgb_aktg_bmf_experimental)
43
 
44
 
45
  ## Training
@@ -47,9 +47,9 @@ The model was trained with the parameters:
47
 
48
  **DataLoader**:
49
 
50
- `torch.utils.data.dataloader.DataLoader` of length 1963 with parameters:
51
  ```
52
- {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
53
  ```
54
 
55
  **Loss**:
@@ -62,8 +62,8 @@ The model was trained with the parameters:
62
  Parameters of the fit()-Method:
63
  ```
64
  {
65
- "epochs": 2,
66
- "evaluation_steps": 50,
67
  "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
68
  "max_grad_norm": 1,
69
  "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
@@ -72,7 +72,7 @@ Parameters of the fit()-Method:
72
  },
73
  "scheduler": "WarmupLinear",
74
  "steps_per_epoch": null,
75
- "warmup_steps": 392,
76
  "weight_decay": 0.01
77
  }
78
  ```
 
8
 
9
  ---
10
 
11
+ # {MODEL_NAME}
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
 
28
  from sentence_transformers import SentenceTransformer
29
  sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
+ model = SentenceTransformer('{MODEL_NAME}')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
 
39
 
40
  <!--- Describe how your model was evaluated -->
41
 
42
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
43
 
44
 
45
  ## Training
 
47
 
48
  **DataLoader**:
49
 
50
+ `torch.utils.data.dataloader.DataLoader` of length 258 with parameters:
51
  ```
52
+ {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
53
  ```
54
 
55
  **Loss**:
 
62
  Parameters of the fit()-Method:
63
  ```
64
  {
65
+ "epochs": 4,
66
+ "evaluation_steps": 200,
67
  "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
68
  "max_grad_norm": 1,
69
  "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
 
72
  },
73
  "scheduler": "WarmupLinear",
74
  "steps_per_epoch": null,
75
+ "warmup_steps": 103,
76
  "weight_decay": 0.01
77
  }
78
  ```
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "/workspace/models/embeddings/e5small_sgb_aktg_bmf",
3
  "architectures": [
4
  "BertModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "intfloat/multilingual-e5-small",
3
  "architectures": [
4
  "BertModel"
5
  ],
config_sentence_transformers.json CHANGED
@@ -4,9 +4,6 @@
4
  "transformers": "4.39.3",
5
  "pytorch": "2.2.2+cu121"
6
  },
7
- "prompts": {
8
- "query": "",
9
- "text": ""
10
- },
11
  "default_prompt_name": null
12
  }
 
4
  "transformers": "4.39.3",
5
  "pytorch": "2.2.2+cu121"
6
  },
7
+ "prompts": {},
 
 
 
8
  "default_prompt_name": null
9
  }
eval/Information-Retrieval_evaluation_results.csv ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cos_sim-Accuracy@1,cos_sim-Accuracy@3,cos_sim-Accuracy@5,cos_sim-Accuracy@10,cos_sim-Precision@1,cos_sim-Recall@1,cos_sim-Precision@3,cos_sim-Recall@3,cos_sim-Precision@5,cos_sim-Recall@5,cos_sim-Precision@10,cos_sim-Recall@10,cos_sim-MRR@10,cos_sim-NDCG@10,cos_sim-MAP@100,dot_score-Accuracy@1,dot_score-Accuracy@3,dot_score-Accuracy@5,dot_score-Accuracy@10,dot_score-Precision@1,dot_score-Recall@1,dot_score-Precision@3,dot_score-Recall@3,dot_score-Precision@5,dot_score-Recall@5,dot_score-Precision@10,dot_score-Recall@10,dot_score-MRR@10,dot_score-NDCG@10,dot_score-MAP@100
2
+ 0,200,0.8619791666666666,0.96875,0.9921875,1.0,0.8619791666666666,0.8619791666666666,0.3229166666666667,0.96875,0.19843750000000002,0.9921875,0.09999999999999999,1.0,0.9179129464285712,0.9385170472228953,0.9179129464285714,0.8619791666666666,0.96875,0.9921875,1.0,0.8619791666666666,0.8619791666666666,0.3229166666666667,0.96875,0.19843750000000002,0.9921875,0.09999999999999999,1.0,0.9179129464285712,0.9385170472228953,0.9179129464285714
3
+ 0,-1,0.828125,0.9661458333333334,0.9869791666666666,0.9973958333333334,0.828125,0.828125,0.3220486111111111,0.9661458333333334,0.19739583333333333,0.9869791666666666,0.09973958333333333,0.9973958333333334,0.8989211309523809,0.9237913949317536,0.8991381448412697,0.828125,0.9661458333333334,0.9869791666666666,0.9973958333333334,0.828125,0.828125,0.3220486111111111,0.9661458333333334,0.19739583333333333,0.9869791666666666,0.09973958333333333,0.9973958333333334,0.8989211309523809,0.9237913949317536,0.8991381448412697
4
+ 1,200,0.8619791666666666,0.9713541666666666,0.9921875,1.0,0.8619791666666666,0.8619791666666666,0.32378472222222227,0.9713541666666666,0.19843750000000002,0.9921875,0.09999999999999999,1.0,0.9199652777777776,0.9401808152086514,0.9199652777777777,0.8619791666666666,0.9713541666666666,0.9921875,1.0,0.8619791666666666,0.8619791666666666,0.32378472222222227,0.9713541666666666,0.19843750000000002,0.9921875,0.09999999999999999,1.0,0.9199652777777776,0.9401808152086514,0.9199652777777777
5
+ 1,-1,0.8359375,0.9713541666666666,0.9869791666666666,0.9973958333333334,0.8359375,0.8359375,0.32378472222222227,0.9713541666666666,0.19739583333333333,0.9869791666666666,0.09973958333333333,0.9973958333333334,0.9028563161375658,0.9266638765203398,0.9030566366503866,0.8359375,0.9713541666666666,0.9869791666666666,0.9973958333333334,0.8359375,0.8359375,0.32378472222222227,0.9713541666666666,0.19739583333333333,0.9869791666666666,0.09973958333333333,0.9973958333333334,0.9028563161375658,0.9266638765203398,0.9030566366503866
6
+ 2,200,0.8697916666666666,0.9713541666666666,0.9947916666666666,1.0,0.8697916666666666,0.8697916666666666,0.32378472222222227,0.9713541666666666,0.19895833333333335,0.9947916666666666,0.09999999999999999,1.0,0.9246527777777777,0.9436510587132476,0.9246527777777779,0.8697916666666666,0.9713541666666666,0.9947916666666666,1.0,0.8697916666666666,0.8697916666666666,0.32378472222222227,0.9713541666666666,0.19895833333333335,0.9947916666666666,0.09999999999999999,1.0,0.9246527777777777,0.9436510587132476,0.9246527777777779
7
+ 2,-1,0.8541666666666666,0.9713541666666666,0.9869791666666666,0.9973958333333334,0.8541666666666666,0.8541666666666666,0.32378472222222227,0.9713541666666666,0.19739583333333333,0.9869791666666666,0.09973958333333333,0.9973958333333334,0.9144376240079365,0.935362373592362,0.914637944520757,0.8541666666666666,0.9713541666666666,0.9869791666666666,0.9973958333333334,0.8541666666666666,0.8541666666666666,0.32378472222222227,0.9713541666666666,0.19739583333333333,0.9869791666666666,0.09973958333333333,0.9973958333333334,0.9144376240079365,0.935362373592362,0.914637944520757
8
+ 3,200,0.8697916666666666,0.9739583333333334,0.9947916666666666,1.0,0.8697916666666666,0.8697916666666666,0.3246527777777778,0.9739583333333334,0.19895833333333335,0.9947916666666666,0.09999999999999999,1.0,0.9235780423280423,0.9428410173245364,0.9235780423280424,0.8697916666666666,0.9739583333333334,0.9947916666666666,1.0,0.8697916666666666,0.8697916666666666,0.3246527777777778,0.9739583333333334,0.19895833333333335,0.9947916666666666,0.09999999999999999,1.0,0.9235780423280423,0.9428410173245364,0.9235780423280424
9
+ 3,-1,0.8697916666666666,0.9739583333333334,0.9947916666666666,1.0,0.8697916666666666,0.8697916666666666,0.3246527777777778,0.9739583333333334,0.19895833333333335,0.9947916666666666,0.09999999999999999,1.0,0.9239831349206348,0.94315082092929,0.923983134920635,0.8697916666666666,0.9739583333333334,0.9947916666666666,1.0,0.8697916666666666,0.8697916666666666,0.3246527777777778,0.9739583333333334,0.19895833333333335,0.9947916666666666,0.09999999999999999,1.0,0.9239831349206348,0.94315082092929,0.923983134920635
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bd8d1881f6db267855c1cdc7b6846a8fe1125f33665b86b1f3b50c8d1c4b6242
3
  size 470637416
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d6dad2648ba71627e8748f28020924f1311665556ef05e90814a4bd06ec2348
3
  size 470637416
tokenizer_config.json CHANGED
@@ -46,17 +46,10 @@
46
  "cls_token": "<s>",
47
  "eos_token": "</s>",
48
  "mask_token": "<mask>",
49
- "max_length": 512,
50
  "model_max_length": 512,
51
- "pad_to_multiple_of": null,
52
  "pad_token": "<pad>",
53
- "pad_token_type_id": 0,
54
- "padding_side": "right",
55
  "sep_token": "</s>",
56
  "sp_model_kwargs": {},
57
- "stride": 0,
58
  "tokenizer_class": "XLMRobertaTokenizer",
59
- "truncation_side": "right",
60
- "truncation_strategy": "longest_first",
61
  "unk_token": "<unk>"
62
  }
 
46
  "cls_token": "<s>",
47
  "eos_token": "</s>",
48
  "mask_token": "<mask>",
 
49
  "model_max_length": 512,
 
50
  "pad_token": "<pad>",
 
 
51
  "sep_token": "</s>",
52
  "sp_model_kwargs": {},
 
53
  "tokenizer_class": "XLMRobertaTokenizer",
 
 
54
  "unk_token": "<unk>"
55
  }