Upload folder using huggingface_hub
Browse files- README.md +8 -8
- config.json +1 -1
- config_sentence_transformers.json +1 -4
- eval/Information-Retrieval_evaluation_results.csv +9 -0
- model.safetensors +1 -1
- tokenizer_config.json +0 -7
README.md
CHANGED
@@ -8,7 +8,7 @@ tags:
|
|
8 |
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
@@ -28,7 +28,7 @@ Then you can use the model like this:
|
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
|
31 |
-
model = SentenceTransformer('
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
34 |
```
|
@@ -39,7 +39,7 @@ print(embeddings)
|
|
39 |
|
40 |
<!--- Describe how your model was evaluated -->
|
41 |
|
42 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=
|
43 |
|
44 |
|
45 |
## Training
|
@@ -47,9 +47,9 @@ The model was trained with the parameters:
|
|
47 |
|
48 |
**DataLoader**:
|
49 |
|
50 |
-
`torch.utils.data.dataloader.DataLoader` of length
|
51 |
```
|
52 |
-
{'batch_size':
|
53 |
```
|
54 |
|
55 |
**Loss**:
|
@@ -62,8 +62,8 @@ The model was trained with the parameters:
|
|
62 |
Parameters of the fit()-Method:
|
63 |
```
|
64 |
{
|
65 |
-
"epochs":
|
66 |
-
"evaluation_steps":
|
67 |
"evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
|
68 |
"max_grad_norm": 1,
|
69 |
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
@@ -72,7 +72,7 @@ Parameters of the fit()-Method:
|
|
72 |
},
|
73 |
"scheduler": "WarmupLinear",
|
74 |
"steps_per_epoch": null,
|
75 |
-
"warmup_steps":
|
76 |
"weight_decay": 0.01
|
77 |
}
|
78 |
```
|
|
|
8 |
|
9 |
---
|
10 |
|
11 |
+
# {MODEL_NAME}
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
|
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
|
31 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
34 |
```
|
|
|
39 |
|
40 |
<!--- Describe how your model was evaluated -->
|
41 |
|
42 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
43 |
|
44 |
|
45 |
## Training
|
|
|
47 |
|
48 |
**DataLoader**:
|
49 |
|
50 |
+
`torch.utils.data.dataloader.DataLoader` of length 258 with parameters:
|
51 |
```
|
52 |
+
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
53 |
```
|
54 |
|
55 |
**Loss**:
|
|
|
62 |
Parameters of the fit()-Method:
|
63 |
```
|
64 |
{
|
65 |
+
"epochs": 4,
|
66 |
+
"evaluation_steps": 200,
|
67 |
"evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
|
68 |
"max_grad_norm": 1,
|
69 |
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
|
|
72 |
},
|
73 |
"scheduler": "WarmupLinear",
|
74 |
"steps_per_epoch": null,
|
75 |
+
"warmup_steps": 103,
|
76 |
"weight_decay": 0.01
|
77 |
}
|
78 |
```
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "intfloat/multilingual-e5-small",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
config_sentence_transformers.json
CHANGED
@@ -4,9 +4,6 @@
|
|
4 |
"transformers": "4.39.3",
|
5 |
"pytorch": "2.2.2+cu121"
|
6 |
},
|
7 |
-
"prompts": {
|
8 |
-
"query": "",
|
9 |
-
"text": ""
|
10 |
-
},
|
11 |
"default_prompt_name": null
|
12 |
}
|
|
|
4 |
"transformers": "4.39.3",
|
5 |
"pytorch": "2.2.2+cu121"
|
6 |
},
|
7 |
+
"prompts": {},
|
|
|
|
|
|
|
8 |
"default_prompt_name": null
|
9 |
}
|
eval/Information-Retrieval_evaluation_results.csv
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cos_sim-Accuracy@1,cos_sim-Accuracy@3,cos_sim-Accuracy@5,cos_sim-Accuracy@10,cos_sim-Precision@1,cos_sim-Recall@1,cos_sim-Precision@3,cos_sim-Recall@3,cos_sim-Precision@5,cos_sim-Recall@5,cos_sim-Precision@10,cos_sim-Recall@10,cos_sim-MRR@10,cos_sim-NDCG@10,cos_sim-MAP@100,dot_score-Accuracy@1,dot_score-Accuracy@3,dot_score-Accuracy@5,dot_score-Accuracy@10,dot_score-Precision@1,dot_score-Recall@1,dot_score-Precision@3,dot_score-Recall@3,dot_score-Precision@5,dot_score-Recall@5,dot_score-Precision@10,dot_score-Recall@10,dot_score-MRR@10,dot_score-NDCG@10,dot_score-MAP@100
|
2 |
+
0,200,0.8619791666666666,0.96875,0.9921875,1.0,0.8619791666666666,0.8619791666666666,0.3229166666666667,0.96875,0.19843750000000002,0.9921875,0.09999999999999999,1.0,0.9179129464285712,0.9385170472228953,0.9179129464285714,0.8619791666666666,0.96875,0.9921875,1.0,0.8619791666666666,0.8619791666666666,0.3229166666666667,0.96875,0.19843750000000002,0.9921875,0.09999999999999999,1.0,0.9179129464285712,0.9385170472228953,0.9179129464285714
|
3 |
+
0,-1,0.828125,0.9661458333333334,0.9869791666666666,0.9973958333333334,0.828125,0.828125,0.3220486111111111,0.9661458333333334,0.19739583333333333,0.9869791666666666,0.09973958333333333,0.9973958333333334,0.8989211309523809,0.9237913949317536,0.8991381448412697,0.828125,0.9661458333333334,0.9869791666666666,0.9973958333333334,0.828125,0.828125,0.3220486111111111,0.9661458333333334,0.19739583333333333,0.9869791666666666,0.09973958333333333,0.9973958333333334,0.8989211309523809,0.9237913949317536,0.8991381448412697
|
4 |
+
1,200,0.8619791666666666,0.9713541666666666,0.9921875,1.0,0.8619791666666666,0.8619791666666666,0.32378472222222227,0.9713541666666666,0.19843750000000002,0.9921875,0.09999999999999999,1.0,0.9199652777777776,0.9401808152086514,0.9199652777777777,0.8619791666666666,0.9713541666666666,0.9921875,1.0,0.8619791666666666,0.8619791666666666,0.32378472222222227,0.9713541666666666,0.19843750000000002,0.9921875,0.09999999999999999,1.0,0.9199652777777776,0.9401808152086514,0.9199652777777777
|
5 |
+
1,-1,0.8359375,0.9713541666666666,0.9869791666666666,0.9973958333333334,0.8359375,0.8359375,0.32378472222222227,0.9713541666666666,0.19739583333333333,0.9869791666666666,0.09973958333333333,0.9973958333333334,0.9028563161375658,0.9266638765203398,0.9030566366503866,0.8359375,0.9713541666666666,0.9869791666666666,0.9973958333333334,0.8359375,0.8359375,0.32378472222222227,0.9713541666666666,0.19739583333333333,0.9869791666666666,0.09973958333333333,0.9973958333333334,0.9028563161375658,0.9266638765203398,0.9030566366503866
|
6 |
+
2,200,0.8697916666666666,0.9713541666666666,0.9947916666666666,1.0,0.8697916666666666,0.8697916666666666,0.32378472222222227,0.9713541666666666,0.19895833333333335,0.9947916666666666,0.09999999999999999,1.0,0.9246527777777777,0.9436510587132476,0.9246527777777779,0.8697916666666666,0.9713541666666666,0.9947916666666666,1.0,0.8697916666666666,0.8697916666666666,0.32378472222222227,0.9713541666666666,0.19895833333333335,0.9947916666666666,0.09999999999999999,1.0,0.9246527777777777,0.9436510587132476,0.9246527777777779
|
7 |
+
2,-1,0.8541666666666666,0.9713541666666666,0.9869791666666666,0.9973958333333334,0.8541666666666666,0.8541666666666666,0.32378472222222227,0.9713541666666666,0.19739583333333333,0.9869791666666666,0.09973958333333333,0.9973958333333334,0.9144376240079365,0.935362373592362,0.914637944520757,0.8541666666666666,0.9713541666666666,0.9869791666666666,0.9973958333333334,0.8541666666666666,0.8541666666666666,0.32378472222222227,0.9713541666666666,0.19739583333333333,0.9869791666666666,0.09973958333333333,0.9973958333333334,0.9144376240079365,0.935362373592362,0.914637944520757
|
8 |
+
3,200,0.8697916666666666,0.9739583333333334,0.9947916666666666,1.0,0.8697916666666666,0.8697916666666666,0.3246527777777778,0.9739583333333334,0.19895833333333335,0.9947916666666666,0.09999999999999999,1.0,0.9235780423280423,0.9428410173245364,0.9235780423280424,0.8697916666666666,0.9739583333333334,0.9947916666666666,1.0,0.8697916666666666,0.8697916666666666,0.3246527777777778,0.9739583333333334,0.19895833333333335,0.9947916666666666,0.09999999999999999,1.0,0.9235780423280423,0.9428410173245364,0.9235780423280424
|
9 |
+
3,-1,0.8697916666666666,0.9739583333333334,0.9947916666666666,1.0,0.8697916666666666,0.8697916666666666,0.3246527777777778,0.9739583333333334,0.19895833333333335,0.9947916666666666,0.09999999999999999,1.0,0.9239831349206348,0.94315082092929,0.923983134920635,0.8697916666666666,0.9739583333333334,0.9947916666666666,1.0,0.8697916666666666,0.8697916666666666,0.3246527777777778,0.9739583333333334,0.19895833333333335,0.9947916666666666,0.09999999999999999,1.0,0.9239831349206348,0.94315082092929,0.923983134920635
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 470637416
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d6dad2648ba71627e8748f28020924f1311665556ef05e90814a4bd06ec2348
|
3 |
size 470637416
|
tokenizer_config.json
CHANGED
@@ -46,17 +46,10 @@
|
|
46 |
"cls_token": "<s>",
|
47 |
"eos_token": "</s>",
|
48 |
"mask_token": "<mask>",
|
49 |
-
"max_length": 512,
|
50 |
"model_max_length": 512,
|
51 |
-
"pad_to_multiple_of": null,
|
52 |
"pad_token": "<pad>",
|
53 |
-
"pad_token_type_id": 0,
|
54 |
-
"padding_side": "right",
|
55 |
"sep_token": "</s>",
|
56 |
"sp_model_kwargs": {},
|
57 |
-
"stride": 0,
|
58 |
"tokenizer_class": "XLMRobertaTokenizer",
|
59 |
-
"truncation_side": "right",
|
60 |
-
"truncation_strategy": "longest_first",
|
61 |
"unk_token": "<unk>"
|
62 |
}
|
|
|
46 |
"cls_token": "<s>",
|
47 |
"eos_token": "</s>",
|
48 |
"mask_token": "<mask>",
|
|
|
49 |
"model_max_length": 512,
|
|
|
50 |
"pad_token": "<pad>",
|
|
|
|
|
51 |
"sep_token": "</s>",
|
52 |
"sp_model_kwargs": {},
|
|
|
53 |
"tokenizer_class": "XLMRobertaTokenizer",
|
|
|
|
|
54 |
"unk_token": "<unk>"
|
55 |
}
|