Eloghosa Ikponmwoba commited on
Commit
4ea2a99
1 Parent(s): ebd41ab

second trained model upload

Browse files
README.md CHANGED
@@ -6,11 +6,11 @@ tags:
6
  - reinforcement-learning
7
  - stable-baselines3
8
  model-index:
9
- - name: PPO_v1
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 226.29 +/- 14.66
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
6
  - reinforcement-learning
7
  - stable-baselines3
8
  model-index:
9
+ - name: PPO_v2
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 254.01 +/- 15.18
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f04092440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f040924d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f04092560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f040925f0>", "_build": "<function ActorCriticPolicy._build at 0x7f5f04092680>", "forward": "<function ActorCriticPolicy.forward at 0x7f5f04092710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f040927a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5f04092830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f040928c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f04092950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f040929e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5f04069060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651691197.202681, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECP5z1ckx66ZuRlvOQOjLYphdA6M3j+NQAAgD8AAIA/s9/qPeGUqrrVVwM8ayS2OJMLjTfd8Jk5AAAAAAAAgD82UpM+8lMfPmB4s71sHLG+jfIVPmrGCz4AAAAAAAAAAHMG4T3D8Si6K8hUuTqBCriwCoY5WnhFNQAAgD8AAIA/zaJ2vbEtwT/nmcW+HIXWPUT15bvOWY69AAAAAAAAAADNxqA8D3sqvGvCODxQ1ls8Iq6YPb+IN70AAIA/AACAP42Fpj1cr3w5dh3CutUp+jTQtLq7YCDwOQAAgD8AAIA/VlmDPn8vej++QLo97WbNvkQMnD5KOBK+AAAAAAAAAACNDOK95jm2P0Bn6L6tKYm+eC75vR1FP74AAAAAAAAAABryzT2PljS6avyau/sTUThtuGm6SspmOAAAgD8AAIA/Iag1v/rOjr5Sh5m8L9rIPLSZuz3IQQm8AACAPwAAgD+apC6+yBGnvBowo71SK0u81uISPjSWID0AAIA/AACAP0AFhz1SmO25JhCwujOuE7WtcqA7jdvOOQAAgD8AAIA/WvuPPuoSnz9Nr8A+R/HnvklVzj6Lilw8AAAAAAAAAAAaQRW97FnYuThKnTvbiqA21xyFuMsYmDUAAIA/AACAPzPnD7zsUfi33SbgOs2R7zU2bp47h8UDugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYabtX1mZUECUhpRSlIwBbJRN6AOMAXSUR0CbUtGCI1tPdX2UKGgGaAloD0MIdaxSeqY+XUCUhpRSlGgVTegDaBZHQJtTycDr7fp1fZQoaAZoCWgPQwjo2EElrrleQJSGlFKUaBVN6ANoFkdAm1Vu7Dl5nnV9lChoBmgJaA9DCMA8ZMqH4F5AlIaUUpRoFU3oA2gWR0CbWOl6qsEJdX2UKGgGaAloD0MIKzI6IAnYXkCUhpRSlGgVTegDaBZHQJtcSl2vB8B1fZQoaAZoCWgPQwhy/iYUIqglwJSGlFKUaBVL42gWR0CbYjGqPwNLdX2UKGgGaAloD0MIXtkFg2swQkCUhpRSlGgVTegDaBZHQJtq+p3os7N1fZQoaAZoCWgPQwgXDRmPUtdYQJSGlFKUaBVN6ANoFkdAm3EkyP+4snV9lChoBmgJaA9DCEsEqn8QE2NAlIaUUpRoFU3oA2gWR0CbcaGsFMZhdX2UKGgGaAloD0MILV3BNuJwYUCUhpRSlGgVTegDaBZHQJt24BS1map1fZQoaAZoCWgPQwh73LdaJ7VRQJSGlFKUaBVN6ANoFkdAm33Q8wHqvHV9lChoBmgJaA9DCAIqHEGquWBAlIaUUpRoFU3oA2gWR0CbgVmrsByTdX2UKGgGaAloD0MIDHkEN1J3WkCUhpRSlGgVTegDaBZHQJuGIFPi1iR1fZQoaAZoCWgPQwhtqu6RzXdiQJSGlFKUaBVN6ANoFkdAm4mRTS9dvHV9lChoBmgJaA9DCBGrP8Iw6kdAlIaUUpRoFUvxaBZHQJuhdR1oxpN1fZQoaAZoCWgPQwgGDf0TXGxaQJSGlFKUaBVN6ANoFkdAm6HDhYNiIHV9lChoBmgJaA9DCMIv9fOmVVdAlIaUUpRoFU3oA2gWR0CbpF15Sm65dX2UKGgGaAloD0MIe7/RjhsDXkCUhpRSlGgVTegDaBZHQJumHTTfBN51fZQoaAZoCWgPQwjovpzZrmtfQJSGlFKUaBVN6ANoFkdAm6bOiBXjl3V9lChoBmgJaA9DCCVYHM78Y19AlIaUUpRoFU3oA2gWR0Cbp9JBw++udX2UKGgGaAloD0MIHTuoxHWsCkCUhpRSlGgVTQQBaBZHQJuq0zhxYJV1fZQoaAZoCWgPQwgFiljEsOBeQJSGlFKUaBVN6ANoFkdAm6328h9srXV9lChoBmgJaA9DCHh7EALyhShAlIaUUpRoFU3oA2gWR0CbshT/Q0GedX2UKGgGaAloD0MItcagE0JZRMCUhpRSlGgVS85oFkdAm7VDRMN+b3V9lChoBmgJaA9DCIBlpUkp8lVAlIaUUpRoFU3oA2gWR0CbuIO6NEPUdX2UKGgGaAloD0MIBMb6BqZTa0CUhpRSlGgVTbMCaBZHQJu4lTbWVeN1fZQoaAZoCWgPQwhyh01k5tliQJSGlFKUaBVN6ANoFkdAm8HYI0IkaHV9lChoBmgJaA9DCBjPoKF/RjzAlIaUUpRoFUvCaBZHQJvGScCo0hx1fZQoaAZoCWgPQwijWkQUk4FbQJSGlFKUaBVN6ANoFkdAm8iAr1/UfHV9lChoBmgJaA9DCGg9fJkoGV1AlIaUUpRoFU3oA2gWR0CbyQU7CBPLdX2UKGgGaAloD0MIfnGpSlsMK0CUhpRSlGgVS+xoFkdAm8luZ1FH8XV9lChoBmgJaA9DCLiP3Jp07FhAlIaUUpRoFU3oA2gWR0Cb2PNwR5C4dX2UKGgGaAloD0MIK6bSTzjaX0CUhpRSlGgVTegDaBZHQJvhczEaVD91fZQoaAZoCWgPQwi932jHjfNiQJSGlFKUaBVN6ANoFkdAm+bHw1BMSXV9lChoBmgJaA9DCOWaApmdXmFAlIaUUpRoFU3oA2gWR0Cb5xF8ohIOdX2UKGgGaAloD0MIcNHJUuthNkCUhpRSlGgVS91oFkdAm/r9Fz+3pnV9lChoBmgJaA9DCHJTA81n4mBAlIaUUpRoFU3oA2gWR0Cb+7lWwNb1dX2UKGgGaAloD0MIGvz9YrbgWECUhpRSlGgVTegDaBZHQJv9PUb1h9d1fZQoaAZoCWgPQwiNnIU9bcphQJSGlFKUaBVN6ANoFkdAm/3JaaCtinV9lChoBmgJaA9DCCtu3GL+V2FAlIaUUpRoFU3oA2gWR0CcAQHBUJfIdX2UKGgGaAloD0MI/fm2YKn+OkCUhpRSlGgVS+toFkdAnAItdZ7ojnV9lChoBmgJaA9DCD4hO29jXVRAlIaUUpRoFU3oA2gWR0CcA3Bsyi22dX2UKGgGaAloD0MI3V1nQ/75BkCUhpRSlGgVS7RoFkdAnAaFB2OhkHV9lChoBmgJaA9DCMMpc/ONA1tAlIaUUpRoFU3oA2gWR0CcBqB19v0idX2UKGgGaAloD0MI6dMq+sNCakCUhpRSlGgVTRcDaBZHQJwHqf4AS391fZQoaAZoCWgPQwhKYkm5+7tYQJSGlFKUaBVN6ANoFkdAnAjn9aUzK3V9lChoBmgJaA9DCHFyv0PRlWhAlIaUUpRoFU1bAWgWR0CcC0/lhgE2dX2UKGgGaAloD0MIK97IPPJPYUCUhpRSlGgVTegDaBZHQJwVgy9EkSp1fZQoaAZoCWgPQwgr/BnerGpdQJSGlFKUaBVN6ANoFkdAnBd3tWuHOHV9lChoBmgJaA9DCEaU9gZf0WNAlIaUUpRoFU3oA2gWR0CcF+RdhRZVdX2UKGgGaAloD0MIiskbYOYvYECUhpRSlGgVTegDaBZHQJwYQPJ7sv91fZQoaAZoCWgPQwhu93KfHOtAQJSGlFKUaBVNEAFoFkdAnCaEcn3L3nV9lChoBmgJaA9DCMB4Bg19cGNAlIaUUpRoFU3oA2gWR0CcNIvphWo4dX2UKGgGaAloD0MIZKw2/69KY0CUhpRSlGgVTegDaBZHQJw2vaURnOB1fZQoaAZoCWgPQwjA0CNGzyVeQJSGlFKUaBVN6ANoFkdAnDeiGi5/b3V9lChoBmgJaA9DCAOWXMVilWJAlIaUUpRoFU3oA2gWR0CcTIHc1wYMdX2UKGgGaAloD0MIZQCo4kZzYkCUhpRSlGgVTegDaBZHQJxQ3Abhm5F1fZQoaAZoCWgPQwiSek/ltFphQJSGlFKUaBVN6ANoFkdAnFJ1J+UhV3V9lChoBmgJaA9DCFgAUwaOnWBAlIaUUpRoFU3oA2gWR0CcU/98qnWKdX2UKGgGaAloD0MI/te5aTMNXkCUhpRSlGgVTegDaBZHQJxXpCSidrh1fZQoaAZoCWgPQwiRfCWQEndfQJSGlFKUaBVN6ANoFkdAnFfFI3BHkXV9lChoBmgJaA9DCNMtO8Q//1dAlIaUUpRoFU3oA2gWR0CcWQ3Mpw0gdX2UKGgGaAloD0MI6QyMvKwvVUCUhpRSlGgVTegDaBZHQJxaceGO+7F1fZQoaAZoCWgPQwijBz4GKyhSQJSGlFKUaBVN6ANoFkdAnF1QBPsRhHV9lChoBmgJaA9DCOp29pUHVUtAlIaUUpRoFUvgaBZHQJxoFEBsANp1fZQoaAZoCWgPQwhz9WOT/BtVQJSGlFKUaBVN6ANoFkdAnGuYRh+fAnV9lChoBmgJaA9DCDvD1JY69WFAlIaUUpRoFU3oA2gWR0CcbBV7Qb++dX2UKGgGaAloD0MI+yDLgonDXUCUhpRSlGgVTegDaBZHQJxsd3Y+Sr51fZQoaAZoCWgPQwgFTyFX6shQQJSGlFKUaBVNHAFoFkdAnG+w08/2TXV9lChoBmgJaA9DCBMoYhHDDERAlIaUUpRoFUutaBZHQJxzh+fAbhp1fZQoaAZoCWgPQwh/+zpwzuNgQJSGlFKUaBVN6ANoFkdAnHtKcmShanV9lChoBmgJaA9DCBstB3qoPSHAlIaUUpRoFUvlaBZHQJyDWhnJ1aJ1fZQoaAZoCWgPQwj4N2ivPtRhQJSGlFKUaBVN6ANoFkdAnIk9noPkJnV9lChoBmgJaA9DCAmLijid2FZAlIaUUpRoFU3oA2gWR0Cci0lb/wRXdX2UKGgGaAloD0MI/Urnw7PzZECUhpRSlGgVTegDaBZHQJyMIsQNCqp1fZQoaAZoCWgPQwh2pztPPPthQJSGlFKUaBVN6ANoFkdAnKEAGjbi63V9lChoBmgJaA9DCEFK7Nre92JAlIaUUpRoFU3oA2gWR0CcpQDE3sHCdX2UKGgGaAloD0MIMj1hiYdeYECUhpRSlGgVTegDaBZHQJymgIQe3hJ1fZQoaAZoCWgPQwgb17/rM+RVQJSGlFKUaBVN6ANoFkdAnKgElNUOu3V9lChoBmgJaA9DCMjPRq4boGBAlIaUUpRoFU3oA2gWR0Ccq5Ba9sabdX2UKGgGaAloD0MIi+JV1jatO0CUhpRSlGgVS/VoFkdAnKuSH/Lkj3V9lChoBmgJaA9DCGE2AYbl92FAlIaUUpRoFU3oA2gWR0Ccq69d/rjYdX2UKGgGaAloD0MI/gsEAbIfZkCUhpRSlGgVTegDaBZHQJys5YcNpdt1fZQoaAZoCWgPQwjv42iOrHwoQJSGlFKUaBVLymgWR0Ccsgwt8NQTdX2UKGgGaAloD0MIkZxM3CpcO0CUhpRSlGgVS+doFkdAnLVAOe8PF3V9lChoBmgJaA9DCOWAXU2e4VxAlIaUUpRoFU3oA2gWR0Ccv/KRuCPIdX2UKGgGaAloD0MIEhYVcbobYUCUhpRSlGgVTegDaBZHQJzAbmmtQsR1fZQoaAZoCWgPQwgdVyO70vpgQJSGlFKUaBVN6ANoFkdAnMDQPI4lyHV9lChoBmgJaA9DCP9AuW3fpV1AlIaUUpRoFU3oA2gWR0Ccw+Aksz2wdX2UKGgGaAloD0MIkWEVb2R2QECUhpRSlGgVS+doFkdAnMSbdJrckHV9lChoBmgJaA9DCHUGRl7WfFJAlIaUUpRoFUuraBZHQJzKqrdWQwN1fZQoaAZoCWgPQwiGcqJdhdBNQJSGlFKUaBVL5WgWR0CczeoQnQY2dX2UKGgGaAloD0MICD4GK06cY0CUhpRSlGgVTegDaBZHQJzOuf5DZ151fZQoaAZoCWgPQwjaWIl5VthFQJSGlFKUaBVLw2gWR0Cc0JvQWvbHdX2UKGgGaAloD0MInNuEe2WYQcCUhpRSlGgVS+ZoFkdAnNIALmZE2HV9lChoBmgJaA9DCOIgIcoXgVlAlIaUUpRoFU3oA2gWR0Cc1ZQgcLjQdX2UKGgGaAloD0MIMuauJWQZYkCUhpRSlGgVTegDaBZHQJzcH07KaG51fZQoaAZoCWgPQwhvL2mM1spiQJSGlFKUaBVN6ANoFkdAnNzhyGSIQHV9lChoBmgJaA9DCOdwrfaw7zdAlIaUUpRoFUvhaBZHQJzeipLmITJ1fZQoaAZoCWgPQwh8mpMXmY5iQJSGlFKUaBVN6ANoFkdAnN8GgnMMZ3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f04092440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f040924d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f04092560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f040925f0>", "_build": "<function ActorCriticPolicy._build at 0x7f5f04092680>", "forward": "<function ActorCriticPolicy.forward at 0x7f5f04092710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f040927a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5f04092830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f040928c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f04092950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f040929e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5f04069060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651692649.6991677, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZDsD320Fy6et0JOhMS0DQ/OB67NX0euQAAgD8AAAAAQJmCvexjmT9Gx5W9e2ShvtQR473lfHc9AAAAAAAAAADAF6g9L88HP/fmkrz5di++aFo2PJ59Tj0AAAAAAAAAACaRsr2uX426hicnOh6Y9Db6PDA75bZOuQAAgD8AAAAAzQ+XPIoOqD85dUk+rqPcvuOWurxKesi8AAAAAAAAAAAA5ey9xlTZPuiIfT65nIq+xPaGPacxuzwAAAAAAAAAADMzpLyPplS6M40DvLaSSTeYSqK5Rje4tgAAgD8AAIA/5tYnPU8Rdbwahly88GGEPbiumz10Cp08AACAPwAAgD+ABLy9SFWJuppCWDtCtVi2MIn+uh7PeroAAIA/AACAP8Betj3PJ3w/MajHPQAqq772Po89aeC/vQAAAAAAAAAAJq4YvtLB2ruGv4U4OVWlPK+ZRD0KeYq9AACAPwAAgD/mCeS9e9KyunrQEjya/VY2cVh7OsOJPTUAAIA/AAAAAJpNDz1ce1e64vRau9bHnzVXO4S6aJYVtQAAgD8AAIA/zd4uPPF4nD96kSY9Po21vk52YzuVODk8AAAAAAAAAAAAMRU99gxRulvyQ7yJiNy12gk7u8veRDUAAIA/AACAPzM5lL1cfwW6Wks5O7XT8zat5pw7kIhZugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHbCryVN0ZECUhpRSlIwBbJRN6AOMAXSUR0CRyACOFQEZdX2UKGgGaAloD0MIIEWduQf5ZECUhpRSlGgVTegDaBZHQJHQOAoXsPd1fZQoaAZoCWgPQwhGelG732pmQJSGlFKUaBVN6ANoFkdAkdCYku6ErXV9lChoBmgJaA9DCC6u8ZnsD2VAlIaUUpRoFU3oA2gWR0CR0O3hGYrsdX2UKGgGaAloD0MIqdxELc23Y0CUhpRSlGgVTegDaBZHQJHVtlPJq7B1fZQoaAZoCWgPQwgB+n3/ZvFmQJSGlFKUaBVN6ANoFkdAkdbJxm03O3V9lChoBmgJaA9DCBtIF5tWI2FAlIaUUpRoFU3oA2gWR0CR2JD15B1LdX2UKGgGaAloD0MItOOG302WZECUhpRSlGgVTegDaBZHQJHtP4i5d4V1fZQoaAZoCWgPQwgb2gBsQDVkQJSGlFKUaBVN6ANoFkdAkfGHxOLzgHV9lChoBmgJaA9DCN7n+GhxymBAlIaUUpRoFU3oA2gWR0CR8zd8zAN5dX2UKGgGaAloD0MIQ1ciUP2IY0CUhpRSlGgVTegDaBZHQJH8RM0xdpt1fZQoaAZoCWgPQwijBP2FHuk9QJSGlFKUaBVL9WgWR0CSAZK9f1HwdX2UKGgGaAloD0MIccgG0sXyM0CUhpRSlGgVS+FoFkdAkgHpXuE253V9lChoBmgJaA9DCFn5ZTBGdmNAlIaUUpRoFU3oA2gWR0CSB3WiUPhAdX2UKGgGaAloD0MI2qoksg+OZUCUhpRSlGgVTegDaBZHQJIKMTj/+851fZQoaAZoCWgPQwgY6xuYXD5kQJSGlFKUaBVN6ANoFkdAkgvw44p+dHV9lChoBmgJaA9DCO7O2m2Xi2JAlIaUUpRoFU3oA2gWR0CSDKN3GGVSdX2UKGgGaAloD0MIegCL/PppNECUhpRSlGgVS+VoFkdAkhA5v99+gHV9lChoBmgJaA9DCFu21hcJDGJAlIaUUpRoFU3oA2gWR0CSEpx+rlvIdX2UKGgGaAloD0MIi6VIvhKYZUCUhpRSlGgVTegDaBZHQJIUeCPIXCV1fZQoaAZoCWgPQwiBsilXePhcQJSGlFKUaBVN6ANoFkdAkhwMU7CBPXV9lChoBmgJaA9DCBKFlnX/+GBAlIaUUpRoFU3oA2gWR0CSHGXY150KdX2UKGgGaAloD0MI3uNMEzZVYkCUhpRSlGgVTegDaBZHQJIctUJfICF1fZQoaAZoCWgPQwgDXmbYKDc8QJSGlFKUaBVL8GgWR0CSHj2FFlTWdX2UKGgGaAloD0MIA7StZh1SYkCUhpRSlGgVTegDaBZHQJIg8S6DoQp1fZQoaAZoCWgPQwivljszwQ5iQJSGlFKUaBVN6ANoFkdAkiHhGDtgKHV9lChoBmgJaA9DCM5THXIzd2JAlIaUUpRoFU3oA2gWR0CSI3fdyksSdX2UKGgGaAloD0MI3o5wWvDKYECUhpRSlGgVTegDaBZHQJI3VuJk5IZ1fZQoaAZoCWgPQwg8bCIzF79eQJSGlFKUaBVN6ANoFkdAkkbE/8l5W3V9lChoBmgJaA9DCO3Vx0PfGF9AlIaUUpRoFU3oA2gWR0CSTGTnq3VkdX2UKGgGaAloD0MIy2lPyTk/YkCUhpRSlGgVTegDaBZHQJJSIDfWMCN1fZQoaAZoCWgPQwh2jCsujtxiQJSGlFKUaBVN6ANoFkdAklTG8mKIi3V9lChoBmgJaA9DCPqzHykiA11AlIaUUpRoFU3oA2gWR0CSVoBdD6WPdX2UKGgGaAloD0MI/DcvTvx0ZkCUhpRSlGgVTegDaBZHQJJXLko4MnZ1fZQoaAZoCWgPQwicwkoFla1gQJSGlFKUaBVN6ANoFkdAkl0ctXgccXV9lChoBmgJaA9DCIiE7/0N6F1AlIaUUpRoFU3oA2gWR0CSXv8fFJg9dX2UKGgGaAloD0MIdJgvL8BeCMCUhpRSlGgVS7JoFkdAkmDeXVsk6nV9lChoBmgJaA9DCMk4RrJHFV5AlIaUUpRoFU3oA2gWR0CSZuIjW07bdX2UKGgGaAloD0MIYroQq7/pYECUhpRSlGgVTegDaBZHQJJnQaLn9vV1fZQoaAZoCWgPQwhb7zfacapiQJSGlFKUaBVN6ANoFkdAkmeNGI9C/3V9lChoBmgJaA9DCMMrSZ5rjmRAlIaUUpRoFU3oA2gWR0CSaUXvphWpdX2UKGgGaAloD0MIfNY1Wg5QYECUhpRSlGgVTegDaBZHQJJsAw7DEWJ1fZQoaAZoCWgPQwh/FHXmHvBlQJSGlFKUaBVN6ANoFkdAkm0EZm7J4nV9lChoBmgJaA9DCP5D+u1r7GFAlIaUUpRoFU3oA2gWR0CSbqTxoZhsdX2UKGgGaAloD0MIrn5skh91MUCUhpRSlGgVS8ZoFkdAkoGU/KQq7XV9lChoBmgJaA9DCIyDS8ccomFAlIaUUpRoFU3oA2gWR0CSgnI065oXdX2UKGgGaAloD0MIxQH0+/6N/b+UhpRSlGgVS/5oFkdAkoh5aiblR3V9lChoBmgJaA9DCGSw4lRrE2FAlIaUUpRoFU3oA2gWR0CSj/z+WGATdX2UKGgGaAloD0MIRNsxddfvZECUhpRSlGgVTegDaBZHQJKVXbnHNot1fZQoaAZoCWgPQwgexqS/l3oqQJSGlFKUaBVL6WgWR0CSl1C4z7/GdX2UKGgGaAloD0MIW7VrQlrFY0CUhpRSlGgVTegDaBZHQJKbTCqIacZ1fZQoaAZoCWgPQwjbNLbXgmZjQJSGlFKUaBVN6ANoFkdAkp4Pw3HaOHV9lChoBmgJaA9DCMdGIF7XbmNAlIaUUpRoFU3oA2gWR0CSoIlPrOZ9dX2UKGgGaAloD0MIQBcNGQ88YUCUhpRSlGgVTegDaBZHQJKml8ohIOJ1fZQoaAZoCWgPQwiBe54/7cVjQJSGlFKUaBVN6ANoFkdAkqh18CxNZnV9lChoBmgJaA9DCPZCAdtBjmFAlIaUUpRoFU3oA2gWR0CSqmdAxBVudX2UKGgGaAloD0MIKUAUzJiWPkCUhpRSlGgVTQMBaBZHQJKwPFyaNMp1fZQoaAZoCWgPQwj2KFyPwoRdQJSGlFKUaBVN6ANoFkdAkrCAuAZsK3V9lChoBmgJaA9DCBx5ILLIdGNAlIaUUpRoFU3oA2gWR0CSsOB19v0idX2UKGgGaAloD0MID9HoDuKVYECUhpRSlGgVTegDaBZHQJKxLhZQpF11fZQoaAZoCWgPQwjG/UemQ8NAQJSGlFKUaBVL62gWR0CStJtcfNiZdX2UKGgGaAloD0MI6X+5Fq2lZUCUhpRSlGgVTegDaBZHQJK1faufVZt1fZQoaAZoCWgPQwhH41C/i5xlQJSGlFKUaBVN6ANoFkdAkrgo6nzg/HV9lChoBmgJaA9DCLix2ZFq52JAlIaUUpRoFU3oA2gWR0CSvdI4lyBDdX2UKGgGaAloD0MIcAhVavZAYUCUhpRSlGgVTegDaBZHQJLMrER8MNN1fZQoaAZoCWgPQwg0vcRYJs5jQJSGlFKUaBVN6ANoFkdAkt3NETg2qHV9lChoBmgJaA9DCPymsFLBRmJAlIaUUpRoFU3oA2gWR0CS5EUCaJAMdX2UKGgGaAloD0MIqMe2DDiCZUCUhpRSlGgVTegDaBZHQJLmaEmICU51fZQoaAZoCWgPQwhw7URJSEhiQJSGlFKUaBVN6ANoFkdAkuq9iH6/I3V9lChoBmgJaA9DCIyjchO1+mNAlIaUUpRoFU3oA2gWR0CS7dizsyBTdX2UKGgGaAloD0MIZwqd11gIYkCUhpRSlGgVTegDaBZHQJL606q814x1fZQoaAZoCWgPQwhvERjrm75iQJSGlFKUaBVN6ANoFkdAkv0ct9QXRHV9lChoBmgJaA9DCKc7TzxnJFpAlIaUUpRoFU3oA2gWR0CTA6MK1G9YdX2UKGgGaAloD0MIxeV4BSK1ZUCUhpRSlGgVTegDaBZHQJMD8nVoYel1fZQoaAZoCWgPQwj9gt2wbYpfQJSGlFKUaBVN6ANoFkdAkwRSLVFx43V9lChoBmgJaA9DCNl6hnBMw2JAlIaUUpRoFU3oA2gWR0CTBJ/vv0AcdX2UKGgGaAloD0MIqRH6mXoeY0CUhpRSlGgVTegDaBZHQJMIHVoYekp1fZQoaAZoCWgPQwitw9FVOpBjQJSGlFKUaBVN6ANoFkdAkwjpCF9KEnV9lChoBmgJaA9DCPSMfcnGs1BAlIaUUpRoFUveaBZHQJMKxHDrJKd1fZQoaAZoCWgPQwjb4ET0axtcQJSGlFKUaBVN6ANoFkdAkwt/kq+ajXV9lChoBmgJaA9DCBU7God6GmFAlIaUUpRoFU3oA2gWR0CTEMjMFEApdX2UKGgGaAloD0MIz6RN1T0SQ0CUhpRSlGgVS+xoFkdAkxEB77bcoHV9lChoBmgJaA9DCAisHFrkQWJAlIaUUpRoFU3oA2gWR0CTEZhYvFm4dX2UKGgGaAloD0MIec4WEFqhT0CUhpRSlGgVS8ZoFkdAkyEUXDWK/HV9lChoBmgJaA9DCFaCxeHM3WFAlIaUUpRoFU3oA2gWR0CTLK/Ho5ggdX2UKGgGaAloD0MImkF8YEd/YkCUhpRSlGgVTegDaBZHQJMyKWPcSGt1fZQoaAZoCWgPQwiAuRYtwEJgQJSGlFKUaBVN6ANoFkdAkzQQTAWSEHV9lChoBmgJaA9DCEG7Q4qBeWNAlIaUUpRoFU3oA2gWR0CTOAU83dbgdX2UKGgGaAloD0MIG9gqweLWXkCUhpRSlGgVTegDaBZHQJM63+fh/Al1fZQoaAZoCWgPQwjFVtC0RA1hQJSGlFKUaBVN6ANoFkdAk0Y9FKCg9XV9lChoBmgJaA9DCMIv9fOmGWZAlIaUUpRoFU3oA2gWR0CTT0i9IwuedX2UKGgGaAloD0MI9pfdk4dIXUCUhpRSlGgVTegDaBZHQJNPktyxRl91fZQoaAZoCWgPQwhdixagbVZkQJSGlFKUaBVN6ANoFkdAk1BTGcWj5HV9lChoBmgJaA9DCPFkNzN6R2BAlIaUUpRoFU3oA2gWR0CTVJdpqREGdX2UKGgGaAloD0MIPQ/uzlqDYUCUhpRSlGgVTegDaBZHQJNX7oX9BKN1fZQoaAZoCWgPQwgQ5+EEpihkQJSGlFKUaBVN6ANoFkdAk1jkWykbgnV9lChoBmgJaA9DCMnLmljgxWNAlIaUUpRoFU3oA2gWR0CTXywc5sCUdX2UKGgGaAloD0MIY5eo3prbYECUhpRSlGgVTegDaBZHQJNfbMmnfl91fZQoaAZoCWgPQwg+k/3ztA1jQJSGlFKUaBVN6ANoFkdAk2ATuF6Av3V9lChoBmgJaA9DCNV3flECyGFAlIaUUpRoFU3oA2gWR0CTYhr+o99udWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8f019d33c961eaceece4439f92a01d10c85e36a20bfdf39c835c07f5ad50c8d
3
+ size 144035
ppo-LunarLander-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v3/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f04092440>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f040924d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f04092560>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f040925f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5f04092680>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5f04092710>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f040927a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5f04092830>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f040928c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f04092950>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f040929e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f5f04069060>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651692649.6991677,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZDsD320Fy6et0JOhMS0DQ/OB67NX0euQAAgD8AAAAAQJmCvexjmT9Gx5W9e2ShvtQR473lfHc9AAAAAAAAAADAF6g9L88HP/fmkrz5di++aFo2PJ59Tj0AAAAAAAAAACaRsr2uX426hicnOh6Y9Db6PDA75bZOuQAAgD8AAAAAzQ+XPIoOqD85dUk+rqPcvuOWurxKesi8AAAAAAAAAAAA5ey9xlTZPuiIfT65nIq+xPaGPacxuzwAAAAAAAAAADMzpLyPplS6M40DvLaSSTeYSqK5Rje4tgAAgD8AAIA/5tYnPU8Rdbwahly88GGEPbiumz10Cp08AACAPwAAgD+ABLy9SFWJuppCWDtCtVi2MIn+uh7PeroAAIA/AACAP8Betj3PJ3w/MajHPQAqq772Po89aeC/vQAAAAAAAAAAJq4YvtLB2ruGv4U4OVWlPK+ZRD0KeYq9AACAPwAAgD/mCeS9e9KyunrQEjya/VY2cVh7OsOJPTUAAIA/AAAAAJpNDz1ce1e64vRau9bHnzVXO4S6aJYVtQAAgD8AAIA/zd4uPPF4nD96kSY9Po21vk52YzuVODk8AAAAAAAAAAAAMRU99gxRulvyQ7yJiNy12gk7u8veRDUAAIA/AACAPzM5lL1cfwW6Wks5O7XT8zat5pw7kIhZugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHbCryVN0ZECUhpRSlIwBbJRN6AOMAXSUR0CRyACOFQEZdX2UKGgGaAloD0MIIEWduQf5ZECUhpRSlGgVTegDaBZHQJHQOAoXsPd1fZQoaAZoCWgPQwhGelG732pmQJSGlFKUaBVN6ANoFkdAkdCYku6ErXV9lChoBmgJaA9DCC6u8ZnsD2VAlIaUUpRoFU3oA2gWR0CR0O3hGYrsdX2UKGgGaAloD0MIqdxELc23Y0CUhpRSlGgVTegDaBZHQJHVtlPJq7B1fZQoaAZoCWgPQwgB+n3/ZvFmQJSGlFKUaBVN6ANoFkdAkdbJxm03O3V9lChoBmgJaA9DCBtIF5tWI2FAlIaUUpRoFU3oA2gWR0CR2JD15B1LdX2UKGgGaAloD0MItOOG302WZECUhpRSlGgVTegDaBZHQJHtP4i5d4V1fZQoaAZoCWgPQwgb2gBsQDVkQJSGlFKUaBVN6ANoFkdAkfGHxOLzgHV9lChoBmgJaA9DCN7n+GhxymBAlIaUUpRoFU3oA2gWR0CR8zd8zAN5dX2UKGgGaAloD0MIQ1ciUP2IY0CUhpRSlGgVTegDaBZHQJH8RM0xdpt1fZQoaAZoCWgPQwijBP2FHuk9QJSGlFKUaBVL9WgWR0CSAZK9f1HwdX2UKGgGaAloD0MIccgG0sXyM0CUhpRSlGgVS+FoFkdAkgHpXuE253V9lChoBmgJaA9DCFn5ZTBGdmNAlIaUUpRoFU3oA2gWR0CSB3WiUPhAdX2UKGgGaAloD0MI2qoksg+OZUCUhpRSlGgVTegDaBZHQJIKMTj/+851fZQoaAZoCWgPQwgY6xuYXD5kQJSGlFKUaBVN6ANoFkdAkgvw44p+dHV9lChoBmgJaA9DCO7O2m2Xi2JAlIaUUpRoFU3oA2gWR0CSDKN3GGVSdX2UKGgGaAloD0MIegCL/PppNECUhpRSlGgVS+VoFkdAkhA5v99+gHV9lChoBmgJaA9DCFu21hcJDGJAlIaUUpRoFU3oA2gWR0CSEpx+rlvIdX2UKGgGaAloD0MIi6VIvhKYZUCUhpRSlGgVTegDaBZHQJIUeCPIXCV1fZQoaAZoCWgPQwiBsilXePhcQJSGlFKUaBVN6ANoFkdAkhwMU7CBPXV9lChoBmgJaA9DCBKFlnX/+GBAlIaUUpRoFU3oA2gWR0CSHGXY150KdX2UKGgGaAloD0MI3uNMEzZVYkCUhpRSlGgVTegDaBZHQJIctUJfICF1fZQoaAZoCWgPQwgDXmbYKDc8QJSGlFKUaBVL8GgWR0CSHj2FFlTWdX2UKGgGaAloD0MIA7StZh1SYkCUhpRSlGgVTegDaBZHQJIg8S6DoQp1fZQoaAZoCWgPQwivljszwQ5iQJSGlFKUaBVN6ANoFkdAkiHhGDtgKHV9lChoBmgJaA9DCM5THXIzd2JAlIaUUpRoFU3oA2gWR0CSI3fdyksSdX2UKGgGaAloD0MI3o5wWvDKYECUhpRSlGgVTegDaBZHQJI3VuJk5IZ1fZQoaAZoCWgPQwg8bCIzF79eQJSGlFKUaBVN6ANoFkdAkkbE/8l5W3V9lChoBmgJaA9DCO3Vx0PfGF9AlIaUUpRoFU3oA2gWR0CSTGTnq3VkdX2UKGgGaAloD0MIy2lPyTk/YkCUhpRSlGgVTegDaBZHQJJSIDfWMCN1fZQoaAZoCWgPQwh2jCsujtxiQJSGlFKUaBVN6ANoFkdAklTG8mKIi3V9lChoBmgJaA9DCPqzHykiA11AlIaUUpRoFU3oA2gWR0CSVoBdD6WPdX2UKGgGaAloD0MI/DcvTvx0ZkCUhpRSlGgVTegDaBZHQJJXLko4MnZ1fZQoaAZoCWgPQwicwkoFla1gQJSGlFKUaBVN6ANoFkdAkl0ctXgccXV9lChoBmgJaA9DCIiE7/0N6F1AlIaUUpRoFU3oA2gWR0CSXv8fFJg9dX2UKGgGaAloD0MIdJgvL8BeCMCUhpRSlGgVS7JoFkdAkmDeXVsk6nV9lChoBmgJaA9DCMk4RrJHFV5AlIaUUpRoFU3oA2gWR0CSZuIjW07bdX2UKGgGaAloD0MIYroQq7/pYECUhpRSlGgVTegDaBZHQJJnQaLn9vV1fZQoaAZoCWgPQwhb7zfacapiQJSGlFKUaBVN6ANoFkdAkmeNGI9C/3V9lChoBmgJaA9DCMMrSZ5rjmRAlIaUUpRoFU3oA2gWR0CSaUXvphWpdX2UKGgGaAloD0MIfNY1Wg5QYECUhpRSlGgVTegDaBZHQJJsAw7DEWJ1fZQoaAZoCWgPQwh/FHXmHvBlQJSGlFKUaBVN6ANoFkdAkm0EZm7J4nV9lChoBmgJaA9DCP5D+u1r7GFAlIaUUpRoFU3oA2gWR0CSbqTxoZhsdX2UKGgGaAloD0MIrn5skh91MUCUhpRSlGgVS8ZoFkdAkoGU/KQq7XV9lChoBmgJaA9DCIyDS8ccomFAlIaUUpRoFU3oA2gWR0CSgnI065oXdX2UKGgGaAloD0MIxQH0+/6N/b+UhpRSlGgVS/5oFkdAkoh5aiblR3V9lChoBmgJaA9DCGSw4lRrE2FAlIaUUpRoFU3oA2gWR0CSj/z+WGATdX2UKGgGaAloD0MIRNsxddfvZECUhpRSlGgVTegDaBZHQJKVXbnHNot1fZQoaAZoCWgPQwgexqS/l3oqQJSGlFKUaBVL6WgWR0CSl1C4z7/GdX2UKGgGaAloD0MIW7VrQlrFY0CUhpRSlGgVTegDaBZHQJKbTCqIacZ1fZQoaAZoCWgPQwjbNLbXgmZjQJSGlFKUaBVN6ANoFkdAkp4Pw3HaOHV9lChoBmgJaA9DCMdGIF7XbmNAlIaUUpRoFU3oA2gWR0CSoIlPrOZ9dX2UKGgGaAloD0MIQBcNGQ88YUCUhpRSlGgVTegDaBZHQJKml8ohIOJ1fZQoaAZoCWgPQwiBe54/7cVjQJSGlFKUaBVN6ANoFkdAkqh18CxNZnV9lChoBmgJaA9DCPZCAdtBjmFAlIaUUpRoFU3oA2gWR0CSqmdAxBVudX2UKGgGaAloD0MIKUAUzJiWPkCUhpRSlGgVTQMBaBZHQJKwPFyaNMp1fZQoaAZoCWgPQwj2KFyPwoRdQJSGlFKUaBVN6ANoFkdAkrCAuAZsK3V9lChoBmgJaA9DCBx5ILLIdGNAlIaUUpRoFU3oA2gWR0CSsOB19v0idX2UKGgGaAloD0MID9HoDuKVYECUhpRSlGgVTegDaBZHQJKxLhZQpF11fZQoaAZoCWgPQwjG/UemQ8NAQJSGlFKUaBVL62gWR0CStJtcfNiZdX2UKGgGaAloD0MI6X+5Fq2lZUCUhpRSlGgVTegDaBZHQJK1faufVZt1fZQoaAZoCWgPQwhH41C/i5xlQJSGlFKUaBVN6ANoFkdAkrgo6nzg/HV9lChoBmgJaA9DCLix2ZFq52JAlIaUUpRoFU3oA2gWR0CSvdI4lyBDdX2UKGgGaAloD0MIcAhVavZAYUCUhpRSlGgVTegDaBZHQJLMrER8MNN1fZQoaAZoCWgPQwg0vcRYJs5jQJSGlFKUaBVN6ANoFkdAkt3NETg2qHV9lChoBmgJaA9DCPymsFLBRmJAlIaUUpRoFU3oA2gWR0CS5EUCaJAMdX2UKGgGaAloD0MIqMe2DDiCZUCUhpRSlGgVTegDaBZHQJLmaEmICU51fZQoaAZoCWgPQwhw7URJSEhiQJSGlFKUaBVN6ANoFkdAkuq9iH6/I3V9lChoBmgJaA9DCIyjchO1+mNAlIaUUpRoFU3oA2gWR0CS7dizsyBTdX2UKGgGaAloD0MIZwqd11gIYkCUhpRSlGgVTegDaBZHQJL606q814x1fZQoaAZoCWgPQwhvERjrm75iQJSGlFKUaBVN6ANoFkdAkv0ct9QXRHV9lChoBmgJaA9DCKc7TzxnJFpAlIaUUpRoFU3oA2gWR0CTA6MK1G9YdX2UKGgGaAloD0MIxeV4BSK1ZUCUhpRSlGgVTegDaBZHQJMD8nVoYel1fZQoaAZoCWgPQwj9gt2wbYpfQJSGlFKUaBVN6ANoFkdAkwRSLVFx43V9lChoBmgJaA9DCNl6hnBMw2JAlIaUUpRoFU3oA2gWR0CTBJ/vv0AcdX2UKGgGaAloD0MIqRH6mXoeY0CUhpRSlGgVTegDaBZHQJMIHVoYekp1fZQoaAZoCWgPQwitw9FVOpBjQJSGlFKUaBVN6ANoFkdAkwjpCF9KEnV9lChoBmgJaA9DCPSMfcnGs1BAlIaUUpRoFUveaBZHQJMKxHDrJKd1fZQoaAZoCWgPQwjb4ET0axtcQJSGlFKUaBVN6ANoFkdAkwt/kq+ajXV9lChoBmgJaA9DCBU7God6GmFAlIaUUpRoFU3oA2gWR0CTEMjMFEApdX2UKGgGaAloD0MIz6RN1T0SQ0CUhpRSlGgVS+xoFkdAkxEB77bcoHV9lChoBmgJaA9DCAisHFrkQWJAlIaUUpRoFU3oA2gWR0CTEZhYvFm4dX2UKGgGaAloD0MIec4WEFqhT0CUhpRSlGgVS8ZoFkdAkyEUXDWK/HV9lChoBmgJaA9DCFaCxeHM3WFAlIaUUpRoFU3oA2gWR0CTLK/Ho5ggdX2UKGgGaAloD0MImkF8YEd/YkCUhpRSlGgVTegDaBZHQJMyKWPcSGt1fZQoaAZoCWgPQwiAuRYtwEJgQJSGlFKUaBVN6ANoFkdAkzQQTAWSEHV9lChoBmgJaA9DCEG7Q4qBeWNAlIaUUpRoFU3oA2gWR0CTOAU83dbgdX2UKGgGaAloD0MIG9gqweLWXkCUhpRSlGgVTegDaBZHQJM63+fh/Al1fZQoaAZoCWgPQwjFVtC0RA1hQJSGlFKUaBVN6ANoFkdAk0Y9FKCg9XV9lChoBmgJaA9DCMIv9fOmGWZAlIaUUpRoFU3oA2gWR0CTT0i9IwuedX2UKGgGaAloD0MI9pfdk4dIXUCUhpRSlGgVTegDaBZHQJNPktyxRl91fZQoaAZoCWgPQwhdixagbVZkQJSGlFKUaBVN6ANoFkdAk1BTGcWj5HV9lChoBmgJaA9DCPFkNzN6R2BAlIaUUpRoFU3oA2gWR0CTVJdpqREGdX2UKGgGaAloD0MIPQ/uzlqDYUCUhpRSlGgVTegDaBZHQJNX7oX9BKN1fZQoaAZoCWgPQwgQ5+EEpihkQJSGlFKUaBVN6ANoFkdAk1jkWykbgnV9lChoBmgJaA9DCMnLmljgxWNAlIaUUpRoFU3oA2gWR0CTXywc5sCUdX2UKGgGaAloD0MIY5eo3prbYECUhpRSlGgVTegDaBZHQJNfbMmnfl91fZQoaAZoCWgPQwg+k/3ztA1jQJSGlFKUaBVN6ANoFkdAk2ATuF6Av3V9lChoBmgJaA9DCNV3flECyGFAlIaUUpRoFU3oA2gWR0CTYhr+o99udWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 372,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 128,
86
+ "n_epochs": 6,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9505cd8ea2ddcc089a1de29d372526095af52165122e89f02bfef35435dbff1a
3
+ size 84829
ppo-LunarLander-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfda31e92540c598b1f5610b54c03f396ae71bae3b7fa974ef3b53f11cb22b0b
3
+ size 43201
ppo-LunarLander-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b9f71c167ef48ba53c3e97a91271b132082c0f873321314c3e925c5c78db9f66
3
- size 257841
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e99cb3512a212929de86a430e28bedbe88b710c583a1e040d1899ec8dfff86a2
3
+ size 245077
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 226.29358949917682, "std_reward": 14.662190930779046, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T19:26:23.479007"}
 
1
+ {"mean_reward": 254.01097944774432, "std_reward": 15.177126694231351, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T19:50:06.398877"}