[email protected] commited on
Commit
fbc5d8d
1 Parent(s): 3592a0d

RestartTest

Browse files
Files changed (1) hide show
  1. RestartTest.ipynb +1502 -0
RestartTest.ipynb ADDED
@@ -0,0 +1,1502 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "aacb45c2-eecc-4ab0-983f-0f459d3eb59f",
6
+ "metadata": {},
7
+ "source": [
8
+ "# IDEFICS_ROCOv2 (checkpoint test)\n",
9
+ "\n",
10
+ "This notebook fine-tunes [Idefics3-8B-Llama3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3) model. The source model is fine-tuned on the [Radiology Objects in Context (ROCO)](https://huggingface.co/datasets/eltorio/ROCOv2-radiology) dataset, a large-scale medical and multimodal imaging collection. \n",
11
+ "\n",
12
+ "The fine-tuning process stores the model checkpoints on a regular basis. Re run the notebook from the last checkpoint to continue the fine-tuning process."
13
+ ]
14
+ },
15
+ {
16
+ "cell_type": "code",
17
+ "execution_count": 1,
18
+ "id": "d0e6780c-00e5-4617-a4e8-b76e08233dac",
19
+ "metadata": {
20
+ "executionInfo": {
21
+ "elapsed": 1459,
22
+ "status": "ok",
23
+ "timestamp": 1730997027344,
24
+ "user": {
25
+ "displayName": "Ronan Le Meillat",
26
+ "userId": "09161391957806824350"
27
+ },
28
+ "user_tz": -60
29
+ },
30
+ "id": "8F3w0kcbAMtC"
31
+ },
32
+ "outputs": [],
33
+ "source": [
34
+ "dataset_id = \"eltorio/ROCOv2-radiology\"\n",
35
+ "prompt= \"You are an expert radiologist certified with over 15 years of experience in diagnostic imaging, describe this image\"\n",
36
+ "source_model_id = \"HuggingFaceM4/Idefics3-8B-Llama3\"\n",
37
+ "destination_model_id = \"eltorio/IDEFICS3_ROCOv2\"\n",
38
+ "output_dir = \"IDEFICS3_ROCOv2\""
39
+ ]
40
+ },
41
+ {
42
+ "cell_type": "markdown",
43
+ "id": "020afb19-c0ee-406b-a0ee-ba0e64aeaddd",
44
+ "metadata": {},
45
+ "source": [
46
+ "### Log into Hugging Face"
47
+ ]
48
+ },
49
+ {
50
+ "cell_type": "code",
51
+ "execution_count": 2,
52
+ "id": "cfe7c2dc-fb94-43f1-a6c8-486282886727",
53
+ "metadata": {},
54
+ "outputs": [
55
+ {
56
+ "name": "stdout",
57
+ "output_type": "stream",
58
+ "text": [
59
+ "Hugging Face token found in environment variable\n"
60
+ ]
61
+ },
62
+ {
63
+ "name": "stderr",
64
+ "output_type": "stream",
65
+ "text": [
66
+ "Note: Environment variable`HF_TOKEN` is set and is the current active token independently from the token you've just configured.\n"
67
+ ]
68
+ }
69
+ ],
70
+ "source": [
71
+ "from huggingface_hub import login\n",
72
+ "import os\n",
73
+ "\n",
74
+ "if os.environ.get('HF_TOKEN') is not None:\n",
75
+ " HF_TOKEN = os.environ.get('HF_TOKEN')\n",
76
+ " print(f\"Hugging Face token found in environment variable\")\n",
77
+ "try:\n",
78
+ " import google.colab\n",
79
+ " from google.colab import userdata\n",
80
+ " if (userdata.get('HF_TOKEN') is not None) and (HF_TOKEN == \"\"):\n",
81
+ " HF_TOKEN = userdata.get('HF_TOKEN')\n",
82
+ " else:\n",
83
+ " raise ValueError(\"Please set your Hugging Face token in the user data panel, or pass it as an environment variable\")\n",
84
+ "except ModuleNotFoundError:\n",
85
+ " if HF_TOKEN is None:\n",
86
+ " raise ValueError(\"Please set your Hugging Face token in the user data panel, or pass it as an environment variable\")\n",
87
+ "\n",
88
+ "login(\n",
89
+ " token=HF_TOKEN,\n",
90
+ " add_to_git_credential=True\n",
91
+ ")"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type": "markdown",
96
+ "id": "5826da8d-e57c-434a-b856-3d22d10dd2fb",
97
+ "metadata": {},
98
+ "source": [
99
+ "### Load the dataset"
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "code",
104
+ "execution_count": 3,
105
+ "id": "a74d47eb-f798-47cc-8d98-9fd589ee60b0",
106
+ "metadata": {
107
+ "colab": {
108
+ "base_uri": "https://localhost:8080/",
109
+ "height": 1000,
110
+ "referenced_widgets": [
111
+ "9f1fb7edb868495b831e12c535c4ce77",
112
+ "92e501753b0c49388ce317d0cbad704c",
113
+ "5c0db4ce097c4a7d9235c48b71e83a76",
114
+ "6b491ec2f7604976b347a5feb66a2a2d",
115
+ "98e545ecb77b461290d24e5ccd3cc1d5",
116
+ "18908dfa00534f9b99fd5973c070bbdc",
117
+ "ee551beb730743cc8fcf98c8d467de22",
118
+ "38b31d54ad634e19b41544ba6fa182d6",
119
+ "e6600d6b8cfe429480cbdb2b993c1aa6",
120
+ "69d0bffcb7eb4a0d95c743a99dd06725",
121
+ "a784b176de684e0a8be7995f16212a3a",
122
+ "1bd6753e9e69481992048d1eafe5849e",
123
+ "3e3859d3e3c240119a0eb791e611494d",
124
+ "af2693b9442e4c4896396db4d8336ea5",
125
+ "031dd614106946d79cd0dfe67cefa023",
126
+ "5f2589177ecd47908828ac2b19a1d0df",
127
+ "58304c739def48518cd0a2e51e6c8b9f",
128
+ "8853d39b97ab429ba5863c0a22197886",
129
+ "68da45f8ef1f40e89f2ecb7ae7a2617a",
130
+ "ae11688c634c47d89182e70801f145c3",
131
+ "0ca8ec79f2dc43d0897b56a3b78ee98d",
132
+ "e7544f37527c4bf4b6baea5e92d03ec6",
133
+ "bfce5ea5eec24d8e97a6188164ed31f7",
134
+ "c6c6989b2b8849d29b516660c375d375",
135
+ "505b1265c9ea426f8bde4dabba85cc0a",
136
+ "e5ed0c1c6a2f4202b29a2896e8e31236",
137
+ "eeb11f35ceb547d9aa71fb08e6a03715",
138
+ "90f9e80bb8bd4c39b658420517ce6df5",
139
+ "45d8f2f4cd2142df90b7185ee2ed75c2",
140
+ "2c32cc37b949475f9231d20b3ae96680",
141
+ "87367e46663c4a7fbfeceb5c4ecaa0b5",
142
+ "d2feb51c2e8347f5912b8b1f7d6252e4",
143
+ "0e475163ce174be1b3d41edc3330baeb",
144
+ "0fa957f7e02d4494b090ee9c446d7e04",
145
+ "ab01d3aeb23248b0bfa3b0576e43ea70",
146
+ "0f23267d51f84de9b621a84cf6799bf0",
147
+ "52c45aa3e8e5458db2fdd04955b16864",
148
+ "34b464cada7144bcb3753b23e1d7765d",
149
+ "4388b903acbe4fd189297ce4b2fd0ff5",
150
+ "805a520992af4639848412359eabfff5",
151
+ "8ea57e014d3d40fab57c058b1328d004",
152
+ "944df001d5d7483a92e6bc683c09701a",
153
+ "8bc04b1675d14cc6baa8db4a0fe8180c",
154
+ "d02f2bab1f2f44d1a383a100f46b49b9",
155
+ "058bdcd5a23240ddb7a4efa8e8334fc5",
156
+ "a859d2cec2d14756a93c2a90d6e7271c",
157
+ "38158bc387464c18a79943cbf2ff8d82",
158
+ "8dd54003710c4e38915d6b99faa2627f",
159
+ "4e8e310530ee4a0f86ea3da6541bfea4",
160
+ "42499379fbf3405daa80ad24127934fc",
161
+ "edb31fdbbd60426ea1b95aa8aadedcba",
162
+ "7dbaa240dd8e4f8fa8dd010be1da1e57",
163
+ "1331a9fe5736466e8367f7bf9d4273d2",
164
+ "be86432fa7b444759028c5ad2afbb7d1",
165
+ "e9d0cf692c5044faa9b60ac0858d3bb4",
166
+ "293f5a2a539443aa99764a291405d896",
167
+ "2cb70998cb6749aba86f4f797366ee4c",
168
+ "fde431fce3714221a6fb4f25ec00fc1d",
169
+ "c9d337da383a4cfaae8dbf1a7bda834f",
170
+ "cfa6776359d94782ad0abcb0eaa544d5",
171
+ "2dfc1bb79179445d863c17d84acfb4c9",
172
+ "8c34328ed5d24f22837f73f4accb84a4",
173
+ "58a8969990ee4da39acfccbe6f4bab81",
174
+ "052493c48f8c4dddadc76e845b0eef22",
175
+ "04d3a35c248d46c4b40efe2d8a8adb27",
176
+ "4ec1ab6f09cc40638ad3028494e24a90",
177
+ "af495be62c0f4af89c2126c40bc29573",
178
+ "318d5d1dd67d4e23873a3482cb198a14",
179
+ "a6f0b3010b414beca703085170734b3a",
180
+ "dabaf608430448e594c978622e6329ea",
181
+ "534b998a45cb4b44975dd40a5e452013",
182
+ "03702c12315f4be79e32f61bae0c577a",
183
+ "192e6a14527349ea98ece35e3064bcfc",
184
+ "052904cc91134bcd9d608dd8e2e725d4",
185
+ "a20a026b5d374c5488100b2b8e322985",
186
+ "94db136a74734d4386d34d6ac1a99268",
187
+ "5df7c75e57dc469cab54c4f88f689b12",
188
+ "ee8b76aad5c9435b9cae1300bf06bc11",
189
+ "ede1d8b2f1fd4517b297b22b05bc7007",
190
+ "32e72b9ecd4f4c478ac0f5597fd80830",
191
+ "fcf96cc71d1341918263e61d8386c998",
192
+ "8e0d94ea75f6457c9e77f39cdfdad903",
193
+ "793dbb65d5cf4e1daf5879dd37c20dd7",
194
+ "7cbdad6324024877a6c319722c055708",
195
+ "6697cfcb147742cf9303e55fce484da1",
196
+ "38d7358cf4ed4d588c28bb06d2e44030",
197
+ "db4bdf52d8d54343a41da4cecaae8317",
198
+ "235f704533f14d8eb9cde8ee9d7ce347",
199
+ "49e1bbe36f8d46408b657315fb1378cb",
200
+ "7364d57f39c94338ac84e92f1c246e82",
201
+ "3dd1fcae8ee24ac7b54810d93be13b79",
202
+ "b1f982c6e36a4b0ca88f52fe298bff77",
203
+ "9125f8f6022c449f933a0f14d33fda0a",
204
+ "9c5ecd24df5d44309cd3431b15443afe",
205
+ "300001e07fd6428ea8e0437121d7dee0",
206
+ "d948e3be81d945648b23c4735cc2a39d",
207
+ "9558d08bb2ce45fba074623960b5e2cd",
208
+ "558d79f87f584c05bd00f678f3754e8a",
209
+ "714d7b0467b94f9f8c0fac2116636d89",
210
+ "1c05996cd3da4d62801b1cca484fc679",
211
+ "1a6e7db9705a40c592f124dc3e1bbcb5",
212
+ "e939831f76e948c4aabd351d9f4f5983",
213
+ "8ba416ec3c2c41fcb979e23dfd3d2197",
214
+ "95c9c17fc5a449cf934ee234be3ad456",
215
+ "e614d797ef214a18bbc21ac5fd5d19d1",
216
+ "119d54ebbf6543cc9eb46f1c5eac455d",
217
+ "7b9ed1105d7c411e8776ef87579b1885",
218
+ "5e2af1d91bb84b1ea6d9d9e78810aedd",
219
+ "c7350d8bc53e409a9757c07a3338a091",
220
+ "cdd0fd1afbf5473ea5c700a696ec2714",
221
+ "2711e1ecd6ba4655a65aed610b2c9bb2",
222
+ "1a6d5bb2bf36435cb3177426776100f1",
223
+ "b20003b963b341fea843d78ab5fb9536",
224
+ "3845e901b2254703802ffa7941100d72",
225
+ "d006625e56394770bfa7251e758e30cf",
226
+ "ced9665945454cfd9e39538db2b27d5a",
227
+ "f2149ee0b7454651a3d4848520b9bf14",
228
+ "e8e9fb9c23ab40d3bd830b2098f9dc3a",
229
+ "141cf7d500a74e28894a43f6d4e1460e",
230
+ "4586b647ccbf4aaeaa76cc18d6e665cb",
231
+ "7aeccd8d652e454e921c42ecb967e0f5",
232
+ "b49f56ae212e490987b3b36a77e5aa3b",
233
+ "b829d0a81fa44ea7974e5289e70c8a2d",
234
+ "57dda77517494ddaac9628c3f0afcfa2",
235
+ "6b453755737643398e2e4706a7ed7e4f",
236
+ "c5adb0e0fe324a9cb27ef1db3becc403",
237
+ "0c8b3c409bee43849ceefb2536478638",
238
+ "57f2c0896222444bb083b1cc2cfee55e",
239
+ "def963efaa98452eb42a71b180e003ef",
240
+ "ba000563c0b040c782ed66260bd3720e",
241
+ "cfaa170556f244918584103683cbcc9f",
242
+ "df20e5eb9c5143a388f7fb87a66ae0b1",
243
+ "9743ce9b636748dca9d53b8edf7bba4b",
244
+ "30ce39cf5ec84243b079f56a7f48c346",
245
+ "3cc9fddbfff6402aafa8b1f95309e868",
246
+ "e4127c3b1e914646a0c1c284f5dda155",
247
+ "1f27b696c12a413886594c6a3321132e",
248
+ "cf6e25dedb3342d2aa78fe790886294f",
249
+ "9592793d73be44ee9b94e4666b66eee8",
250
+ "49858f181c35493fad5a78b5714553ca",
251
+ "4ecc9d6bb9fe42d1822dd3c51ccd796c",
252
+ "d395d8bea8ec45f586687222550ffbb9",
253
+ "fa4182c2d5b0454899a06f01cb5a50ed",
254
+ "a37760b13c624d9494844be3304895ec",
255
+ "606988656da247d0a397f51485b2e74c",
256
+ "ea825d67cd2a4753af417c345fde8c27",
257
+ "ce8bf8faf7904743962166085d6e8cac",
258
+ "f5886ee593cf4eaeba77704f0f945da0",
259
+ "cbe25015ecef494a81efba20c8824f85",
260
+ "5f663c5a363741ddb98385fe6d993382",
261
+ "5dd10c0678844bd88c7d61628b66d884",
262
+ "b12122a3d354486587e2d6677c3afb93",
263
+ "099bf7f4825a432f8536392b9c9a92f9",
264
+ "f2db7c87f141450faedc81abf9c1e2b9",
265
+ "69a712d0f248444d8415e3187a08ea66",
266
+ "e84dc792c822437fa285c88a6bd5f593",
267
+ "4498e66146c24da9972f1be3effdae35",
268
+ "ea10a2d4f6714286a611dc319232be74",
269
+ "b1be925dd9d042c487b4ed2edc5575b0",
270
+ "e7736b2982ee412782de039b83d6043a",
271
+ "2cd745b3c6314e5eb3910db8bb060dcd",
272
+ "fc3f4ed6aa504b60a478d91f0e74c367",
273
+ "6c6dd664b1ba49bcab55033b4728a1ac",
274
+ "8852ca4c5ce4483fb3a68e4162fdd7c2",
275
+ "eda2491baaaa40a0ba478f18d919f0d2",
276
+ "6c2d3b5ddc464c84976ab22fd427bf64",
277
+ "976f3fee3e4d4bc49359e65525100cb7",
278
+ "234b3b4fc84b45bd825bf31edfcaa609",
279
+ "760917fbf98c4c64bf3ed91771f90c5b",
280
+ "31e7f2a17f704c0587f65ab935a6474c",
281
+ "b8e7ee5655274cf8a95c3546f8d35a66",
282
+ "f30a823e93424a9f88d60a773aa48127",
283
+ "8dae6c92a4874b369e709cda626b9e16",
284
+ "f50b6e2f01304cecb4cc3bae4b973689",
285
+ "b1f5135ec2ed4fb39e6670fee13ae2ac",
286
+ "ba6f67f2fb47472eb9306d382450a639",
287
+ "89ddc068529c40acb5f15e1288acbf08",
288
+ "159ff3152c48436099bc3935b68bc5ff",
289
+ "4d2cc00cbda049b493e70a34de52f31d",
290
+ "17fb66b43c8a4b6894e13850230dad50",
291
+ "f2c8bf3d270b47fc98a2a73176b38e0e",
292
+ "44234d57983943d5a05d594aea4e2920",
293
+ "75d0a848fd584e3f900930f1f0284b09",
294
+ "9757000fbeee463287c139ff92ec1739",
295
+ "674e2c8442244f47942d8a46455379f3",
296
+ "5d9da2ae9a444bffa51ac0eeb2466c2a",
297
+ "f2eca44d0ca54d47bd583c708145f2d7",
298
+ "602931dff9364a3bb8879726fe9ba637",
299
+ "9d4319a9e4534cdaab0473fdb58fd040",
300
+ "b10f679d7f674190a71ee70feb568f2e",
301
+ "4d040b9b8369407b80d9acee933ead6a",
302
+ "c7993393d2e24ef693f66ee024f1e149",
303
+ "da133d2847b94ae89220c6f18ead0020",
304
+ "04f2a883e2c349ac90e7242a80b27066",
305
+ "41f12316e4b54358bf98ddf919c897a7",
306
+ "54509e9406474869a2f459b3abc5aa22",
307
+ "0e605fc1126849a5a83f5833de8ff3ab",
308
+ "849bfba20fde4288ba38685cebdfb35c",
309
+ "048a2a63e0374bcf9208e195c421957a",
310
+ "b63bd174450a4b8097d2dd83306533c8",
311
+ "060aa178f0e44659942667115f2a0e43",
312
+ "13bde01a38044aa082a5f236facbeb5f",
313
+ "77a9761fbb764ff4b3d543afff4f26d2",
314
+ "a46a8c9089754927923d84ddd9ab167e",
315
+ "1b7190e5a2984695852e8cfa2aa5894a",
316
+ "fa97b3ea652d48a4b9942abb23f46259",
317
+ "dbeef4558d2147b289fa108ab47a2dcc",
318
+ "a36f2eb9970340ec96c37f2dec04d3bc",
319
+ "cc613172d44a42f1bb24f94660710cc3",
320
+ "94dee2553d274b119d0c8ef589c7f40d",
321
+ "04bd7ac45116475fbfcf63210e27bbc1",
322
+ "41884cd70c104ac38ca29e566b9e3d97",
323
+ "25f1f07563a040749690b9447181267e",
324
+ "a8da49836fcb43b990ac5f38559e6221",
325
+ "91e5719eb4744510a58cd1b2236afd69",
326
+ "709e43eb493e4808b9fb0bdf8d8c70c3",
327
+ "6264cbd8bcdc4cf4b98871ec6d62d7c0",
328
+ "ebed8d6a297a41c19bf8adb998428218",
329
+ "7ebc2f1ce5b84d0b91d0697849330a71",
330
+ "aeca0598f8e64f8bb16b5dec78f6e2cd",
331
+ "8a393051dda141f2a107f453cb3a21bd",
332
+ "b67a33887f2c457c805df04eaea25f12",
333
+ "501f10738ea742c59a423c00131631e2",
334
+ "88cb916758314187b0d880df7740ff51",
335
+ "957d482f0b164233a6c0884d6804e99c",
336
+ "cee3a6b3b1774e6e8426afe66d738678",
337
+ "2ec30c90fde44cfe83c8a4fec8f4f0c8",
338
+ "c831e1725b234647afd35bcdf5b60a48",
339
+ "7ce0aed330c948bcae8e8c14a5c84b1f",
340
+ "f8d99fe78fb2479d851bb3be2521539e",
341
+ "e8e91eae7b374756a873c1a011d5fecb",
342
+ "37052784502e46d6b50702eeb7786c5d",
343
+ "33f434725edc4305ab70bc12976e1ee1",
344
+ "7517ae4b420645e5928928cced44b1ba",
345
+ "8e9b3df7fb7044c5b3d53b2d05fa1237",
346
+ "e932dd7eaafe45288452c61ec6e69e10",
347
+ "ae05630c20a145ff934264a196bb53c5",
348
+ "cf862ffe6dd8447495d2eb24fc32c54e",
349
+ "8e2470267fbb4328a18071a6b1a88bdb",
350
+ "570f0f87519f43f08e28286e0f7cc9aa",
351
+ "516e1569f9c644b5b7f9680ad1836a0e",
352
+ "224f44f0c138439599b64b0a22e18561",
353
+ "2f030628be5944e59bbbc71845b459e5",
354
+ "6e3835d20e014fa0a156d37c7cdca45b",
355
+ "6562b0c2d2324f589b91f5d73b1572ea",
356
+ "5399443d85a941ca8c1d8de3c82d474e",
357
+ "caa506dfc4b840a9b12dbad5c369d2a9",
358
+ "98a3259b6668496191c42b4d938989b1",
359
+ "ce6b97944af3468da286531314b1be55",
360
+ "f06d40ec0b78474e8e00b8c3337b7c37",
361
+ "a25f7ac10ff6440ca254c9d649835282",
362
+ "1b213b4516b2474a81dadc8b62891b40",
363
+ "4e5cea218561410ab566ee3f8250c7a7",
364
+ "a0ca9d5fe07841c7a763dff2c09e3723",
365
+ "c96b087decc04e7f9570524baeee690f",
366
+ "634d38780680487c9fb4c5602ad49721",
367
+ "39614acd98c744aea09a933c28b4203e",
368
+ "159b2fcf518248e8b0e2e3a78c76f05a",
369
+ "4915320c740c4ae5baeb2d343987823e",
370
+ "7766e3ff19b345c782bc23c74b115fd6",
371
+ "4dd83966ac5340b6b5565178106a660e",
372
+ "a720bb7a7e154611a0fc2f4c645b86a2",
373
+ "67487b9f5b7e4a5b94731b21337150c1",
374
+ "9375eff4ffad4c5cb5a7a23868ee2ccd",
375
+ "8c0f22f1c7364865aa277ade8c3968bd",
376
+ "df76bba09bc649689cb529159a0f53ec",
377
+ "369ef8edc5b74e2a87a1ac280db04c76",
378
+ "7e4f4dd037b547a897a51d3795138ae9",
379
+ "797cbb6d462540b68dc7c941aebf6696",
380
+ "8b68d6fa26664dfba7fcb25f12eda0b2",
381
+ "a4d2e340bd37407cab41900028db60d1",
382
+ "0ec459dfb233410599d999ac0ff93cb5",
383
+ "9a3ea32e4533406fb3296ae024187bde",
384
+ "afaae56bdb7243adaef805fb12381171",
385
+ "1fb54fa6223d4434a87ed156bd0da59e",
386
+ "356dfbb75d1647ee84592bc3acdb97c4",
387
+ "7b98988a584a48d8835e2bafc6656244",
388
+ "433b1e1da2f044539d3583c4e7c87277",
389
+ "44f9756ad81c4cba8bbb389dfa346a21",
390
+ "dc92b0a050864c518bb3edc9cc95d097",
391
+ "d968f143ad264470b6153e285522d20e",
392
+ "94ba39aae77c4f5da9ed764d8bbbb787",
393
+ "5308870c262e4ddd9951dc773fc4ff82",
394
+ "afe8ec13518348588fb7c121d88bbede",
395
+ "ee87d5335f1a4902856d9810e7405d86",
396
+ "b556c220a2f644b0be33bedfc4ab37da",
397
+ "16f05787e29d4d9ea49607bc59c8635f",
398
+ "b7945dcbda23460695df21785d842e32",
399
+ "e25a53f84ed74e259c9c8dca384acfdd",
400
+ "c7c89190bbdc4ecf85b235f28cd260c4",
401
+ "0781b655bb6b45d895efc78d1d8800e8",
402
+ "2e75922cfe6e4a01ae1d754cce683b77",
403
+ "269f1a47aaa745d688bff8634002d6e4",
404
+ "21230790d0ad4aeeb06f27befaa94f57",
405
+ "918b680796214199ba9fda7a28b7b48a",
406
+ "d90021999afd4b989ac59fdedcc44df4",
407
+ "2c31a59376a041f9a70bdbcd95b196ac",
408
+ "0669c278494941728fe0795e9c6f4867",
409
+ "757195231ca54f5a95d0f35246c98ac1",
410
+ "28b98661f1094a37989eb170de5ff9fb",
411
+ "22b31e5d19b54aa993a6fa74a2d8676f",
412
+ "59382d76dd9c4a0ebeec230e0943d152",
413
+ "d4292fe89a44486aa120ede14d7f54f7",
414
+ "2b0d4caf302c4238b82ab41a8218a2ae",
415
+ "94850b29b8724feba55999563ca5394a",
416
+ "cd19571be77440b58dc378718acdcfe9",
417
+ "252fdfd71eb3457eb16bc2ad78bf7c92",
418
+ "48d07314744544eda49d7d64df228069",
419
+ "78c07bf46ec142e7be5efea449352368",
420
+ "4469befba04a46be90a1ada54be23d2f",
421
+ "cdb4edb6863742cbbfaee7a004f44a06",
422
+ "8ee664d228f24099855490ca1a6ec511",
423
+ "3e1cebf6d59747e69eecbebb223a46e6",
424
+ "8d8e96c495e1455b8bad70e4ec82e707",
425
+ "4b8cc06cfad64c139f680dc37ce9c0d2",
426
+ "0912bb3fdea04b91a18b852341586b72",
427
+ "bb293ee3925f4283be569177c81058cc",
428
+ "991c717a23104fe4a63ddbe5622bb602",
429
+ "42a249a3b8004fd9ac1fd6e160a76eb9",
430
+ "d77a6697f1094585922d186f94d4cded",
431
+ "d071a8c35b064d489eb3c0302389807d",
432
+ "8759e89091bc4ef89e6f7eec08cf0060",
433
+ "7c467e66ba1d4cb6a3e86732eb3808da",
434
+ "648baf6ccba14e5c9bd220500ac4d907",
435
+ "3070d7cdf5c24da982b3d067a956853d",
436
+ "fc543c8083454e05925f0f4a3d576a0b",
437
+ "f50adaf856074b539b0008a0b8eb2f8d",
438
+ "ec29599c1281435eb61c59b4ed36b10d",
439
+ "3c263202204b433ab6d2535f17c388cc",
440
+ "cd98582b26294c16842c6450e6745ea0",
441
+ "95bf9b8754eb49998481f7b7ec6de83b",
442
+ "93b9cd4e86034a62b03cf4a12d830561",
443
+ "7b3222f646c440869c4b99db56dc06f1",
444
+ "2f0541b6a7824b86ac2c70eae49366c3",
445
+ "c0ae8a54c6ef4200ab5ebbaae9d40f51",
446
+ "acea5f3faec04f1dbdd94b70894d675c",
447
+ "3602a9e748d34a3faf079bcd6bd1e4c3",
448
+ "1f21f3ad1e294d6f8dd6fd1b32f21f7f",
449
+ "f9bedd2a11ee49719830ef2132c47b4b",
450
+ "f1abe23757c54eb98df5e5995c02e57e",
451
+ "5b07414f6728479fa54ca08c9b1762d0",
452
+ "a908cfdd55bd4dd7bcb265b3fc543cd2",
453
+ "657669383cef4f1babe66f2788cf3793",
454
+ "99f122891e564a6187cdf1b40c630bc5",
455
+ "f1876ec512174551a531eedfe7f9f3f7",
456
+ "b43de568a9624b3dafed127ec05fb33d",
457
+ "a0c1768cf64d4a5e8df52aac24e3539b",
458
+ "1e0f5205bd884bd784cc710983cf223a",
459
+ "d48af41f002448198d23ed3564078478",
460
+ "0516ed2dcc714d21ad62450a8aefaa3c",
461
+ "888ca195e590415d895b60370b1dd904",
462
+ "f620293d10cd45afaf5ed61e2d8597ae",
463
+ "d918763d272549268b6f6822bc669998",
464
+ "2c3524bdbf2c4d3f9757dfca9f801433",
465
+ "81116b6fa75c4d25bd528818532227d0",
466
+ "cdb3c5d2068344388342c079bd45b1fe",
467
+ "533464f5ce984ff99ec2d53a393eb336",
468
+ "ae436c99493c4cc3ad4842358b3bc3ff",
469
+ "42fe587493cc49c28264d821f1557d35",
470
+ "d514b8c9d66d48039beb37e28add0a93",
471
+ "fb48433364dd42778a3e045f9d39c95e",
472
+ "0d7b3708d2894a49bfe98ebef0aa50a6",
473
+ "3288c16e67c64fc081a7343018a5b564",
474
+ "7aeb5b44ef00474284b20a8c07b356bc",
475
+ "a110709e1dc249d188c7e1967006bf1d",
476
+ "ea7f6ed74c8b40c3813cfdd1c01a5283",
477
+ "9deafef19f214d929337ca012dd653d0",
478
+ "62f32b6f17df46038b938cef9bc1b673",
479
+ "587a748eb72e4b9fbe1d27612fb37e79",
480
+ "350ab0925630433992d667a465ac1b11",
481
+ "9a5a69cba9b94d169bf767bb2bd75d6a",
482
+ "6002450696db4a15958f39f5014be380",
483
+ "a203f631dd374d8aa11b1face537e6be",
484
+ "f93d6bf133434e7899b1786e729b9f47",
485
+ "d5f3cb4539db47fbae84122a96acdf21",
486
+ "f0b3536703134a22a57b9427463b12ee",
487
+ "4dc1b1a7fa68433196bcb7bc30aef421",
488
+ "274587f016014a68bb20557d05f6e8d3",
489
+ "15f77c07bb6446ab9c5d3b206b1357bc",
490
+ "9d25562d85764b3da733616ec8bb68e1",
491
+ "3b13bd4ff067435586508d91868f3b63",
492
+ "10248cbdaa7d4ea99830d3dae0838f0f",
493
+ "c971e53f10b54a8faadb179df71597e7",
494
+ "290b76e842e84e198c70c606fe20899e",
495
+ "d974fa71d05148729e08d893095bad24",
496
+ "669ee8f1b5fc408d81c2ddd2de5f6f9c",
497
+ "08311eecb34641f5b602cc8a0888d86d",
498
+ "82c64dba67694d889f0a0c01cf3830e7",
499
+ "a6210ad7ceb247b0b136db6810605168",
500
+ "1ae53773abea471580087a823e5301c1",
501
+ "356430f29d3044acb0da3a7d12f611be",
502
+ "a14307cb17164b57bdd09e7373681272",
503
+ "17fe943fdb4546138856cececadbdc41",
504
+ "cac374bd58e14b50bac063685ed741ab",
505
+ "a9452c25f1664eb5a87d3e954f8768c8",
506
+ "17e5bc7c84f846879478f68cc26a3603"
507
+ ]
508
+ },
509
+ "executionInfo": {
510
+ "elapsed": 506620,
511
+ "status": "ok",
512
+ "timestamp": 1730997570445,
513
+ "user": {
514
+ "displayName": "Ronan Le Meillat",
515
+ "userId": "09161391957806824350"
516
+ },
517
+ "user_tz": -60
518
+ },
519
+ "id": "QBOsKy-jAMtF",
520
+ "outputId": "4ccdbf0a-f96f-42e3-8825-6d63dc4a025a"
521
+ },
522
+ "outputs": [
523
+ {
524
+ "data": {
525
+ "application/vnd.jupyter.widget-view+json": {
526
+ "model_id": "0c622eb62cbe4679be84993a83e55aa6",
527
+ "version_major": 2,
528
+ "version_minor": 0
529
+ },
530
+ "text/plain": [
531
+ "README.md: 0%| | 0.00/4.50k [00:00<?, ?B/s]"
532
+ ]
533
+ },
534
+ "metadata": {},
535
+ "output_type": "display_data"
536
+ },
537
+ {
538
+ "data": {
539
+ "application/vnd.jupyter.widget-view+json": {
540
+ "model_id": "8fcb995b9c77443eaf0c36ea1e754db6",
541
+ "version_major": 2,
542
+ "version_minor": 0
543
+ },
544
+ "text/plain": [
545
+ "Resolving data files: 0%| | 0/27 [00:00<?, ?it/s]"
546
+ ]
547
+ },
548
+ "metadata": {},
549
+ "output_type": "display_data"
550
+ },
551
+ {
552
+ "data": {
553
+ "application/vnd.jupyter.widget-view+json": {
554
+ "model_id": "854ae8deb29943bd98072e19c660605c",
555
+ "version_major": 2,
556
+ "version_minor": 0
557
+ },
558
+ "text/plain": [
559
+ "Resolving data files: 0%| | 0/27 [00:00<?, ?it/s]"
560
+ ]
561
+ },
562
+ "metadata": {},
563
+ "output_type": "display_data"
564
+ },
565
+ {
566
+ "data": {
567
+ "application/vnd.jupyter.widget-view+json": {
568
+ "model_id": "158297e5ad1243e99f274d2a077ef526",
569
+ "version_major": 2,
570
+ "version_minor": 0
571
+ },
572
+ "text/plain": [
573
+ "Downloading data: 0%| | 0/27 [00:00<?, ?files/s]"
574
+ ]
575
+ },
576
+ "metadata": {},
577
+ "output_type": "display_data"
578
+ },
579
+ {
580
+ "data": {
581
+ "application/vnd.jupyter.widget-view+json": {
582
+ "model_id": "e6eecdb2f41e425d9f2544023c3d47a8",
583
+ "version_major": 2,
584
+ "version_minor": 0
585
+ },
586
+ "text/plain": [
587
+ "train-00000-of-00027.parquet: 0%| | 0.00/497M [00:00<?, ?B/s]"
588
+ ]
589
+ },
590
+ "metadata": {},
591
+ "output_type": "display_data"
592
+ },
593
+ {
594
+ "data": {
595
+ "application/vnd.jupyter.widget-view+json": {
596
+ "model_id": "f28ed8c569794c0ca4040a0fa9648232",
597
+ "version_major": 2,
598
+ "version_minor": 0
599
+ },
600
+ "text/plain": [
601
+ "train-00001-of-00027.parquet: 0%| | 0.00/504M [00:00<?, ?B/s]"
602
+ ]
603
+ },
604
+ "metadata": {},
605
+ "output_type": "display_data"
606
+ },
607
+ {
608
+ "data": {
609
+ "application/vnd.jupyter.widget-view+json": {
610
+ "model_id": "4bf1572a5ba04eefac69e60b3c6e4bff",
611
+ "version_major": 2,
612
+ "version_minor": 0
613
+ },
614
+ "text/plain": [
615
+ "train-00002-of-00027.parquet: 0%| | 0.00/490M [00:00<?, ?B/s]"
616
+ ]
617
+ },
618
+ "metadata": {},
619
+ "output_type": "display_data"
620
+ },
621
+ {
622
+ "data": {
623
+ "application/vnd.jupyter.widget-view+json": {
624
+ "model_id": "176ce0b53a6c46fda57b1bbbd1c41f60",
625
+ "version_major": 2,
626
+ "version_minor": 0
627
+ },
628
+ "text/plain": [
629
+ "train-00003-of-00027.parquet: 0%| | 0.00/485M [00:00<?, ?B/s]"
630
+ ]
631
+ },
632
+ "metadata": {},
633
+ "output_type": "display_data"
634
+ },
635
+ {
636
+ "data": {
637
+ "application/vnd.jupyter.widget-view+json": {
638
+ "model_id": "72599b9a44a641a58967599a026d2dc0",
639
+ "version_major": 2,
640
+ "version_minor": 0
641
+ },
642
+ "text/plain": [
643
+ "train-00004-of-00027.parquet: 0%| | 0.00/510M [00:00<?, ?B/s]"
644
+ ]
645
+ },
646
+ "metadata": {},
647
+ "output_type": "display_data"
648
+ },
649
+ {
650
+ "data": {
651
+ "application/vnd.jupyter.widget-view+json": {
652
+ "model_id": "1db1c1cf909f4c9f81f8e6be61c63c24",
653
+ "version_major": 2,
654
+ "version_minor": 0
655
+ },
656
+ "text/plain": [
657
+ "train-00005-of-00027.parquet: 0%| | 0.00/498M [00:00<?, ?B/s]"
658
+ ]
659
+ },
660
+ "metadata": {},
661
+ "output_type": "display_data"
662
+ },
663
+ {
664
+ "data": {
665
+ "application/vnd.jupyter.widget-view+json": {
666
+ "model_id": "df31fe8468184aaa90c470d07e400681",
667
+ "version_major": 2,
668
+ "version_minor": 0
669
+ },
670
+ "text/plain": [
671
+ "train-00006-of-00027.parquet: 0%| | 0.00/532M [00:00<?, ?B/s]"
672
+ ]
673
+ },
674
+ "metadata": {},
675
+ "output_type": "display_data"
676
+ },
677
+ {
678
+ "data": {
679
+ "application/vnd.jupyter.widget-view+json": {
680
+ "model_id": "a27d65dd71aa4180ab9417b789f048f2",
681
+ "version_major": 2,
682
+ "version_minor": 0
683
+ },
684
+ "text/plain": [
685
+ "train-00007-of-00027.parquet: 0%| | 0.00/482M [00:00<?, ?B/s]"
686
+ ]
687
+ },
688
+ "metadata": {},
689
+ "output_type": "display_data"
690
+ },
691
+ {
692
+ "data": {
693
+ "application/vnd.jupyter.widget-view+json": {
694
+ "model_id": "a9b246fa4fd545f6bbe76923bcc9af49",
695
+ "version_major": 2,
696
+ "version_minor": 0
697
+ },
698
+ "text/plain": [
699
+ "train-00008-of-00027.parquet: 0%| | 0.00/497M [00:00<?, ?B/s]"
700
+ ]
701
+ },
702
+ "metadata": {},
703
+ "output_type": "display_data"
704
+ },
705
+ {
706
+ "data": {
707
+ "application/vnd.jupyter.widget-view+json": {
708
+ "model_id": "0e36447bf22c4175b9ab74e006a92f8b",
709
+ "version_major": 2,
710
+ "version_minor": 0
711
+ },
712
+ "text/plain": [
713
+ "train-00009-of-00027.parquet: 0%| | 0.00/489M [00:00<?, ?B/s]"
714
+ ]
715
+ },
716
+ "metadata": {},
717
+ "output_type": "display_data"
718
+ },
719
+ {
720
+ "data": {
721
+ "application/vnd.jupyter.widget-view+json": {
722
+ "model_id": "0c9a0e8c5873412d9a931fffa34a2d96",
723
+ "version_major": 2,
724
+ "version_minor": 0
725
+ },
726
+ "text/plain": [
727
+ "train-00010-of-00027.parquet: 0%| | 0.00/484M [00:00<?, ?B/s]"
728
+ ]
729
+ },
730
+ "metadata": {},
731
+ "output_type": "display_data"
732
+ },
733
+ {
734
+ "data": {
735
+ "application/vnd.jupyter.widget-view+json": {
736
+ "model_id": "2a6f45d17b6b421a8fad88a71ea03460",
737
+ "version_major": 2,
738
+ "version_minor": 0
739
+ },
740
+ "text/plain": [
741
+ "train-00011-of-00027.parquet: 0%| | 0.00/508M [00:00<?, ?B/s]"
742
+ ]
743
+ },
744
+ "metadata": {},
745
+ "output_type": "display_data"
746
+ },
747
+ {
748
+ "data": {
749
+ "application/vnd.jupyter.widget-view+json": {
750
+ "model_id": "cca490771366499cb4e65fd29e9954b8",
751
+ "version_major": 2,
752
+ "version_minor": 0
753
+ },
754
+ "text/plain": [
755
+ "train-00012-of-00027.parquet: 0%| | 0.00/490M [00:00<?, ?B/s]"
756
+ ]
757
+ },
758
+ "metadata": {},
759
+ "output_type": "display_data"
760
+ },
761
+ {
762
+ "data": {
763
+ "application/vnd.jupyter.widget-view+json": {
764
+ "model_id": "5c46b8f7bf594f659d10cc50041873c1",
765
+ "version_major": 2,
766
+ "version_minor": 0
767
+ },
768
+ "text/plain": [
769
+ "train-00013-of-00027.parquet: 0%| | 0.00/499M [00:00<?, ?B/s]"
770
+ ]
771
+ },
772
+ "metadata": {},
773
+ "output_type": "display_data"
774
+ },
775
+ {
776
+ "data": {
777
+ "application/vnd.jupyter.widget-view+json": {
778
+ "model_id": "e98116484e7742b1aecfd0ae36529835",
779
+ "version_major": 2,
780
+ "version_minor": 0
781
+ },
782
+ "text/plain": [
783
+ "train-00014-of-00027.parquet: 0%| | 0.00/499M [00:00<?, ?B/s]"
784
+ ]
785
+ },
786
+ "metadata": {},
787
+ "output_type": "display_data"
788
+ },
789
+ {
790
+ "data": {
791
+ "application/vnd.jupyter.widget-view+json": {
792
+ "model_id": "11b129aa209544b78a3eb8f74a4714a2",
793
+ "version_major": 2,
794
+ "version_minor": 0
795
+ },
796
+ "text/plain": [
797
+ "train-00015-of-00027.parquet: 0%| | 0.00/498M [00:00<?, ?B/s]"
798
+ ]
799
+ },
800
+ "metadata": {},
801
+ "output_type": "display_data"
802
+ },
803
+ {
804
+ "data": {
805
+ "application/vnd.jupyter.widget-view+json": {
806
+ "model_id": "dc898819e9a746e58b049afe1d53e990",
807
+ "version_major": 2,
808
+ "version_minor": 0
809
+ },
810
+ "text/plain": [
811
+ "train-00016-of-00027.parquet: 0%| | 0.00/496M [00:00<?, ?B/s]"
812
+ ]
813
+ },
814
+ "metadata": {},
815
+ "output_type": "display_data"
816
+ },
817
+ {
818
+ "data": {
819
+ "application/vnd.jupyter.widget-view+json": {
820
+ "model_id": "74049ceab4974f44b4bf7175404d7fa3",
821
+ "version_major": 2,
822
+ "version_minor": 0
823
+ },
824
+ "text/plain": [
825
+ "train-00017-of-00027.parquet: 0%| | 0.00/498M [00:00<?, ?B/s]"
826
+ ]
827
+ },
828
+ "metadata": {},
829
+ "output_type": "display_data"
830
+ },
831
+ {
832
+ "data": {
833
+ "application/vnd.jupyter.widget-view+json": {
834
+ "model_id": "ff04b945595e44bfa09949dd0aaf4130",
835
+ "version_major": 2,
836
+ "version_minor": 0
837
+ },
838
+ "text/plain": [
839
+ "train-00018-of-00027.parquet: 0%| | 0.00/525M [00:00<?, ?B/s]"
840
+ ]
841
+ },
842
+ "metadata": {},
843
+ "output_type": "display_data"
844
+ },
845
+ {
846
+ "data": {
847
+ "application/vnd.jupyter.widget-view+json": {
848
+ "model_id": "7abcaa766ffd460da3a571e47786984a",
849
+ "version_major": 2,
850
+ "version_minor": 0
851
+ },
852
+ "text/plain": [
853
+ "train-00019-of-00027.parquet: 0%| | 0.00/486M [00:00<?, ?B/s]"
854
+ ]
855
+ },
856
+ "metadata": {},
857
+ "output_type": "display_data"
858
+ },
859
+ {
860
+ "data": {
861
+ "application/vnd.jupyter.widget-view+json": {
862
+ "model_id": "5b2d30420a05440ba96096714f4e6cba",
863
+ "version_major": 2,
864
+ "version_minor": 0
865
+ },
866
+ "text/plain": [
867
+ "train-00020-of-00027.parquet: 0%| | 0.00/483M [00:00<?, ?B/s]"
868
+ ]
869
+ },
870
+ "metadata": {},
871
+ "output_type": "display_data"
872
+ },
873
+ {
874
+ "data": {
875
+ "application/vnd.jupyter.widget-view+json": {
876
+ "model_id": "5e85efad7f52438ea139a2023587c4e2",
877
+ "version_major": 2,
878
+ "version_minor": 0
879
+ },
880
+ "text/plain": [
881
+ "train-00021-of-00027.parquet: 0%| | 0.00/495M [00:00<?, ?B/s]"
882
+ ]
883
+ },
884
+ "metadata": {},
885
+ "output_type": "display_data"
886
+ },
887
+ {
888
+ "data": {
889
+ "application/vnd.jupyter.widget-view+json": {
890
+ "model_id": "fce39109516e40dea41df1aaa2b6d0c5",
891
+ "version_major": 2,
892
+ "version_minor": 0
893
+ },
894
+ "text/plain": [
895
+ "train-00022-of-00027.parquet: 0%| | 0.00/493M [00:00<?, ?B/s]"
896
+ ]
897
+ },
898
+ "metadata": {},
899
+ "output_type": "display_data"
900
+ },
901
+ {
902
+ "data": {
903
+ "application/vnd.jupyter.widget-view+json": {
904
+ "model_id": "19a7f8b8b7644a32bb2c3fbf16fc86b9",
905
+ "version_major": 2,
906
+ "version_minor": 0
907
+ },
908
+ "text/plain": [
909
+ "train-00023-of-00027.parquet: 0%| | 0.00/494M [00:00<?, ?B/s]"
910
+ ]
911
+ },
912
+ "metadata": {},
913
+ "output_type": "display_data"
914
+ },
915
+ {
916
+ "data": {
917
+ "application/vnd.jupyter.widget-view+json": {
918
+ "model_id": "f1ef9a20c2364aab8996143425bdf8ca",
919
+ "version_major": 2,
920
+ "version_minor": 0
921
+ },
922
+ "text/plain": [
923
+ "train-00024-of-00027.parquet: 0%| | 0.00/500M [00:00<?, ?B/s]"
924
+ ]
925
+ },
926
+ "metadata": {},
927
+ "output_type": "display_data"
928
+ },
929
+ {
930
+ "data": {
931
+ "application/vnd.jupyter.widget-view+json": {
932
+ "model_id": "615cd7afc5bf4c669453874e4279f803",
933
+ "version_major": 2,
934
+ "version_minor": 0
935
+ },
936
+ "text/plain": [
937
+ "train-00025-of-00027.parquet: 0%| | 0.00/511M [00:00<?, ?B/s]"
938
+ ]
939
+ },
940
+ "metadata": {},
941
+ "output_type": "display_data"
942
+ },
943
+ {
944
+ "data": {
945
+ "application/vnd.jupyter.widget-view+json": {
946
+ "model_id": "0c265d9e58a44ec0bf24ea4102fc1278",
947
+ "version_major": 2,
948
+ "version_minor": 0
949
+ },
950
+ "text/plain": [
951
+ "train-00026-of-00027.parquet: 0%| | 0.00/517M [00:00<?, ?B/s]"
952
+ ]
953
+ },
954
+ "metadata": {},
955
+ "output_type": "display_data"
956
+ },
957
+ {
958
+ "data": {
959
+ "application/vnd.jupyter.widget-view+json": {
960
+ "model_id": "4a3a2d0e1aa0438d879e200ffc86f4a0",
961
+ "version_major": 2,
962
+ "version_minor": 0
963
+ },
964
+ "text/plain": [
965
+ "validation-00000-of-00006.parquet: 0%| | 0.00/444M [00:00<?, ?B/s]"
966
+ ]
967
+ },
968
+ "metadata": {},
969
+ "output_type": "display_data"
970
+ },
971
+ {
972
+ "data": {
973
+ "application/vnd.jupyter.widget-view+json": {
974
+ "model_id": "b8c4363dc53747078e9ac666b3c043f2",
975
+ "version_major": 2,
976
+ "version_minor": 0
977
+ },
978
+ "text/plain": [
979
+ "validation-00001-of-00006.parquet: 0%| | 0.00/424M [00:00<?, ?B/s]"
980
+ ]
981
+ },
982
+ "metadata": {},
983
+ "output_type": "display_data"
984
+ },
985
+ {
986
+ "data": {
987
+ "application/vnd.jupyter.widget-view+json": {
988
+ "model_id": "b90024b300e84056b059563aeb21d6c1",
989
+ "version_major": 2,
990
+ "version_minor": 0
991
+ },
992
+ "text/plain": [
993
+ "validation-00002-of-00006.parquet: 0%| | 0.00/428M [00:00<?, ?B/s]"
994
+ ]
995
+ },
996
+ "metadata": {},
997
+ "output_type": "display_data"
998
+ },
999
+ {
1000
+ "data": {
1001
+ "application/vnd.jupyter.widget-view+json": {
1002
+ "model_id": "dd41c92792e343ab9707622b75005f42",
1003
+ "version_major": 2,
1004
+ "version_minor": 0
1005
+ },
1006
+ "text/plain": [
1007
+ "validation-00003-of-00006.parquet: 0%| | 0.00/426M [00:00<?, ?B/s]"
1008
+ ]
1009
+ },
1010
+ "metadata": {},
1011
+ "output_type": "display_data"
1012
+ },
1013
+ {
1014
+ "data": {
1015
+ "application/vnd.jupyter.widget-view+json": {
1016
+ "model_id": "92d6024ae987441a926af3dddc47f55c",
1017
+ "version_major": 2,
1018
+ "version_minor": 0
1019
+ },
1020
+ "text/plain": [
1021
+ "validation-00004-of-00006.parquet: 0%| | 0.00/431M [00:00<?, ?B/s]"
1022
+ ]
1023
+ },
1024
+ "metadata": {},
1025
+ "output_type": "display_data"
1026
+ },
1027
+ {
1028
+ "data": {
1029
+ "application/vnd.jupyter.widget-view+json": {
1030
+ "model_id": "20ec7fe5b62144c68109a5c7c61a661e",
1031
+ "version_major": 2,
1032
+ "version_minor": 0
1033
+ },
1034
+ "text/plain": [
1035
+ "validation-00005-of-00006.parquet: 0%| | 0.00/422M [00:00<?, ?B/s]"
1036
+ ]
1037
+ },
1038
+ "metadata": {},
1039
+ "output_type": "display_data"
1040
+ },
1041
+ {
1042
+ "data": {
1043
+ "application/vnd.jupyter.widget-view+json": {
1044
+ "model_id": "206fcb0090a34e79906901dc66a980aa",
1045
+ "version_major": 2,
1046
+ "version_minor": 0
1047
+ },
1048
+ "text/plain": [
1049
+ "test-00000-of-00006.parquet: 0%| | 0.00/436M [00:00<?, ?B/s]"
1050
+ ]
1051
+ },
1052
+ "metadata": {},
1053
+ "output_type": "display_data"
1054
+ },
1055
+ {
1056
+ "data": {
1057
+ "application/vnd.jupyter.widget-view+json": {
1058
+ "model_id": "30206001bcce455d95b8715971de7101",
1059
+ "version_major": 2,
1060
+ "version_minor": 0
1061
+ },
1062
+ "text/plain": [
1063
+ "test-00001-of-00006.parquet: 0%| | 0.00/426M [00:00<?, ?B/s]"
1064
+ ]
1065
+ },
1066
+ "metadata": {},
1067
+ "output_type": "display_data"
1068
+ },
1069
+ {
1070
+ "data": {
1071
+ "application/vnd.jupyter.widget-view+json": {
1072
+ "model_id": "dc2ec175ed5d4b4ca447464cccc3e8b7",
1073
+ "version_major": 2,
1074
+ "version_minor": 0
1075
+ },
1076
+ "text/plain": [
1077
+ "test-00002-of-00006.parquet: 0%| | 0.00/443M [00:00<?, ?B/s]"
1078
+ ]
1079
+ },
1080
+ "metadata": {},
1081
+ "output_type": "display_data"
1082
+ },
1083
+ {
1084
+ "data": {
1085
+ "application/vnd.jupyter.widget-view+json": {
1086
+ "model_id": "54199780c03f4a3483ff5b0bd06c90bb",
1087
+ "version_major": 2,
1088
+ "version_minor": 0
1089
+ },
1090
+ "text/plain": [
1091
+ "test-00003-of-00006.parquet: 0%| | 0.00/432M [00:00<?, ?B/s]"
1092
+ ]
1093
+ },
1094
+ "metadata": {},
1095
+ "output_type": "display_data"
1096
+ },
1097
+ {
1098
+ "data": {
1099
+ "application/vnd.jupyter.widget-view+json": {
1100
+ "model_id": "58c6b85b3d8a49a389124e46fd23a928",
1101
+ "version_major": 2,
1102
+ "version_minor": 0
1103
+ },
1104
+ "text/plain": [
1105
+ "test-00004-of-00006.parquet: 0%| | 0.00/425M [00:00<?, ?B/s]"
1106
+ ]
1107
+ },
1108
+ "metadata": {},
1109
+ "output_type": "display_data"
1110
+ },
1111
+ {
1112
+ "data": {
1113
+ "application/vnd.jupyter.widget-view+json": {
1114
+ "model_id": "a5c2d23979ca44efa9ebd6a87f996eb8",
1115
+ "version_major": 2,
1116
+ "version_minor": 0
1117
+ },
1118
+ "text/plain": [
1119
+ "test-00005-of-00006.parquet: 0%| | 0.00/423M [00:00<?, ?B/s]"
1120
+ ]
1121
+ },
1122
+ "metadata": {},
1123
+ "output_type": "display_data"
1124
+ },
1125
+ {
1126
+ "data": {
1127
+ "application/vnd.jupyter.widget-view+json": {
1128
+ "model_id": "0ca73023dc3443cfa33d9f03a62c21d1",
1129
+ "version_major": 2,
1130
+ "version_minor": 0
1131
+ },
1132
+ "text/plain": [
1133
+ "Generating train split: 0%| | 0/59962 [00:00<?, ? examples/s]"
1134
+ ]
1135
+ },
1136
+ "metadata": {},
1137
+ "output_type": "display_data"
1138
+ },
1139
+ {
1140
+ "data": {
1141
+ "application/vnd.jupyter.widget-view+json": {
1142
+ "model_id": "21fb216da0d0411a8ff026839d63686b",
1143
+ "version_major": 2,
1144
+ "version_minor": 0
1145
+ },
1146
+ "text/plain": [
1147
+ "Generating validation split: 0%| | 0/9904 [00:00<?, ? examples/s]"
1148
+ ]
1149
+ },
1150
+ "metadata": {},
1151
+ "output_type": "display_data"
1152
+ },
1153
+ {
1154
+ "data": {
1155
+ "application/vnd.jupyter.widget-view+json": {
1156
+ "model_id": "76e876cdd17449af908c53a8f9dd2080",
1157
+ "version_major": 2,
1158
+ "version_minor": 0
1159
+ },
1160
+ "text/plain": [
1161
+ "Generating test split: 0%| | 0/9927 [00:00<?, ? examples/s]"
1162
+ ]
1163
+ },
1164
+ "metadata": {},
1165
+ "output_type": "display_data"
1166
+ },
1167
+ {
1168
+ "data": {
1169
+ "application/vnd.jupyter.widget-view+json": {
1170
+ "model_id": "ad808a6a8a1545da9fd43f40422fe79d",
1171
+ "version_major": 2,
1172
+ "version_minor": 0
1173
+ },
1174
+ "text/plain": [
1175
+ "Loading dataset shards: 0%| | 0/27 [00:00<?, ?it/s]"
1176
+ ]
1177
+ },
1178
+ "metadata": {},
1179
+ "output_type": "display_data"
1180
+ }
1181
+ ],
1182
+ "source": [
1183
+ "from datasets import load_dataset\n",
1184
+ "\n",
1185
+ "full_dataset = load_dataset(dataset_id,keep_in_memory=False)\n",
1186
+ "train_dataset = full_dataset[\"train\"]\n",
1187
+ "eval_dataset = full_dataset[\"validation\"]"
1188
+ ]
1189
+ },
1190
+ {
1191
+ "cell_type": "markdown",
1192
+ "id": "657e22f9-799c-4745-b12e-b5ff7d16a139",
1193
+ "metadata": {},
1194
+ "source": [
1195
+ "### Model reloading"
1196
+ ]
1197
+ },
1198
+ {
1199
+ "cell_type": "code",
1200
+ "execution_count": 8,
1201
+ "id": "b17fdc73-6827-4b8d-8fdd-7fe47ab664ca",
1202
+ "metadata": {},
1203
+ "outputs": [
1204
+ {
1205
+ "name": "stderr",
1206
+ "output_type": "stream",
1207
+ "text": [
1208
+ "`low_cpu_mem_usage` was None, now default to True since model is quantized.\n"
1209
+ ]
1210
+ },
1211
+ {
1212
+ "data": {
1213
+ "application/vnd.jupyter.widget-view+json": {
1214
+ "model_id": "8bde30fde856460db776483a6ab871fd",
1215
+ "version_major": 2,
1216
+ "version_minor": 0
1217
+ },
1218
+ "text/plain": [
1219
+ "Loading checkpoint shards: 0%| | 0/4 [00:00<?, ?it/s]"
1220
+ ]
1221
+ },
1222
+ "metadata": {},
1223
+ "output_type": "display_data"
1224
+ }
1225
+ ],
1226
+ "source": [
1227
+ "import torch\n",
1228
+ "from peft import LoraConfig\n",
1229
+ "from transformers import AutoProcessor, BitsAndBytesConfig, Idefics3ForConditionalGeneration\n",
1230
+ "\n",
1231
+ "DEVICE = \"cuda:0\"\n",
1232
+ "\n",
1233
+ "processor = AutoProcessor.from_pretrained(\n",
1234
+ " source_model_id,\n",
1235
+ " do_image_splitting=False\n",
1236
+ ")\n",
1237
+ "\n",
1238
+ "model = Idefics3ForConditionalGeneration.from_pretrained(\n",
1239
+ " source_model_id,\n",
1240
+ " torch_dtype=torch.float16,\n",
1241
+ " quantization_config=bnb_config if USE_QLORA else None,\n",
1242
+ ")\n",
1243
+ "model.load_adapter(destination_model_id)\n"
1244
+ ]
1245
+ },
1246
+ {
1247
+ "cell_type": "markdown",
1248
+ "id": "2c9d71e4-ab26-436b-a644-4d2c58aa46db",
1249
+ "metadata": {
1250
+ "id": "0JeaGZxHAMtG"
1251
+ },
1252
+ "source": [
1253
+ "### Step 5: Create Data Collator for IDEFICS3 format."
1254
+ ]
1255
+ },
1256
+ {
1257
+ "cell_type": "code",
1258
+ "execution_count": 9,
1259
+ "id": "d8499a9d-a6da-4108-8325-71b0660bf422",
1260
+ "metadata": {
1261
+ "executionInfo": {
1262
+ "elapsed": 426,
1263
+ "status": "ok",
1264
+ "timestamp": 1730998596513,
1265
+ "user": {
1266
+ "displayName": "Ronan Le Meillat",
1267
+ "userId": "09161391957806824350"
1268
+ },
1269
+ "user_tz": -60
1270
+ },
1271
+ "id": "X6TWyPHaAMtH"
1272
+ },
1273
+ "outputs": [],
1274
+ "source": [
1275
+ "class MyDataCollator:\n",
1276
+ " def __init__(self, processor):\n",
1277
+ " self.processor = processor\n",
1278
+ " self.image_token_id = processor.tokenizer.additional_special_tokens_ids[\n",
1279
+ " processor.tokenizer.additional_special_tokens.index(\"<image>\")\n",
1280
+ " ]\n",
1281
+ "\n",
1282
+ " def __call__(self, samples):\n",
1283
+ " texts = []\n",
1284
+ " images = []\n",
1285
+ " for sample in samples:\n",
1286
+ " image = sample[\"image\"]\n",
1287
+ " answer = sample[\"caption\"]\n",
1288
+ " messages = [\n",
1289
+ " {\n",
1290
+ " \"role\": \"system\",\n",
1291
+ " \"content\": [\n",
1292
+ " {\"type\": \"text\", \"text\": prompt}\n",
1293
+ " ]\n",
1294
+ "\n",
1295
+ " },\n",
1296
+ " {\n",
1297
+ " \"role\": \"user\",\n",
1298
+ " \"content\": [\n",
1299
+ " {\"type\": \"image\"},\n",
1300
+ " ]\n",
1301
+ " },\n",
1302
+ " {\n",
1303
+ " \"role\": \"assistant\",\n",
1304
+ " \"content\": [\n",
1305
+ " {\"type\": \"text\", \"text\": answer}\n",
1306
+ " ]\n",
1307
+ " }\n",
1308
+ " ]\n",
1309
+ " text = processor.apply_chat_template(messages, add_generation_prompt=False)\n",
1310
+ " texts.append(text.strip())\n",
1311
+ " images.append([image.convert('RGB')])\n",
1312
+ "\n",
1313
+ " batch = processor(text=texts, images=images, return_tensors=\"pt\", padding=True)\n",
1314
+ "\n",
1315
+ " labels = batch[\"input_ids\"].clone()\n",
1316
+ " labels[labels == processor.tokenizer.pad_token_id] = self.image_token_id\n",
1317
+ " batch[\"labels\"] = labels\n",
1318
+ "\n",
1319
+ " return batch\n",
1320
+ "\n",
1321
+ "data_collator = MyDataCollator(processor)"
1322
+ ]
1323
+ },
1324
+ {
1325
+ "cell_type": "markdown",
1326
+ "id": "e6467b63-06c1-4227-ab02-2aa5074c8231",
1327
+ "metadata": {
1328
+ "id": "vsq4TtIJAMtH"
1329
+ },
1330
+ "source": [
1331
+ "### Step 6: Setup training parameters"
1332
+ ]
1333
+ },
1334
+ {
1335
+ "cell_type": "code",
1336
+ "execution_count": 12,
1337
+ "id": "1f06690e-4b81-4db7-882e-3f24a33350c6",
1338
+ "metadata": {
1339
+ "executionInfo": {
1340
+ "elapsed": 1008,
1341
+ "status": "ok",
1342
+ "timestamp": 1730998601172,
1343
+ "user": {
1344
+ "displayName": "Ronan Le Meillat",
1345
+ "userId": "09161391957806824350"
1346
+ },
1347
+ "user_tz": -60
1348
+ },
1349
+ "id": "Q_WKQFfoAMtH"
1350
+ },
1351
+ "outputs": [],
1352
+ "source": [
1353
+ "from transformers import TrainingArguments, Trainer\n",
1354
+ "\n",
1355
+ "training_args = TrainingArguments(\n",
1356
+ " output_dir = output_dir,\n",
1357
+ " overwrite_output_dir = False,\n",
1358
+ " auto_find_batch_size = True,\n",
1359
+ " learning_rate = 2e-4,\n",
1360
+ " fp16 = True,\n",
1361
+ " per_device_train_batch_size = 2,\n",
1362
+ " per_device_eval_batch_size = 2,\n",
1363
+ " gradient_accumulation_steps = 8,\n",
1364
+ " dataloader_pin_memory = False,\n",
1365
+ " save_total_limit = 3,\n",
1366
+ " eval_strategy = \"steps\",\n",
1367
+ " save_strategy = \"steps\",\n",
1368
+ " eval_steps = 100,\n",
1369
+ " save_steps = 10, # checkpoint each 10 steps\n",
1370
+ " resume_from_checkpoint = True,\n",
1371
+ " logging_steps = 5,\n",
1372
+ " remove_unused_columns = False,\n",
1373
+ " push_to_hub = False,\n",
1374
+ " label_names = [\"labels\"],\n",
1375
+ " load_best_model_at_end = False,\n",
1376
+ " report_to = \"none\",\n",
1377
+ " optim = \"paged_adamw_8bit\",\n",
1378
+ ")"
1379
+ ]
1380
+ },
1381
+ {
1382
+ "cell_type": "code",
1383
+ "execution_count": 11,
1384
+ "id": "3dcca8d8-4d4e-49a4-9af5-4958edb9e0fc",
1385
+ "metadata": {
1386
+ "colab": {
1387
+ "base_uri": "https://localhost:8080/"
1388
+ },
1389
+ "executionInfo": {
1390
+ "elapsed": 426,
1391
+ "status": "ok",
1392
+ "timestamp": 1730998605441,
1393
+ "user": {
1394
+ "displayName": "Ronan Le Meillat",
1395
+ "userId": "09161391957806824350"
1396
+ },
1397
+ "user_tz": -60
1398
+ },
1399
+ "id": "vSIo17mgAMtH",
1400
+ "outputId": "3bebd35a-ed7f-49ee-e1bc-91594e8dcd24"
1401
+ },
1402
+ "outputs": [],
1403
+ "source": [
1404
+ "trainer = Trainer(\n",
1405
+ " model = model,\n",
1406
+ " args = training_args,\n",
1407
+ " data_collator = data_collator,\n",
1408
+ " train_dataset = train_dataset,\n",
1409
+ " eval_dataset = eval_dataset,\n",
1410
+ ")"
1411
+ ]
1412
+ },
1413
+ {
1414
+ "cell_type": "code",
1415
+ "execution_count": 14,
1416
+ "id": "ff256dc8-6f5a-423a-9607-81cd9ef7735f",
1417
+ "metadata": {},
1418
+ "outputs": [
1419
+ {
1420
+ "ename": "ValueError",
1421
+ "evalue": "No valid checkpoint found in output directory (IDEFICS3_ROCOv2)",
1422
+ "output_type": "error",
1423
+ "traceback": [
1424
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
1425
+ "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
1426
+ "Cell \u001b[0;32mIn[14], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m trainer\u001b[38;5;241m.\u001b[39mtrain(resume_from_checkpoint\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n",
1427
+ "File \u001b[0;32m~/.miniconda3/lib/python3.12/site-packages/transformers/trainer.py:2109\u001b[0m, in \u001b[0;36mTrainer.train\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m 2107\u001b[0m resume_from_checkpoint \u001b[38;5;241m=\u001b[39m get_last_checkpoint(args\u001b[38;5;241m.\u001b[39moutput_dir)\n\u001b[1;32m 2108\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m resume_from_checkpoint \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m-> 2109\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo valid checkpoint found in output directory (\u001b[39m\u001b[38;5;132;01m{\u001b[39;00margs\u001b[38;5;241m.\u001b[39moutput_dir\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m)\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 2111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m resume_from_checkpoint \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 2112\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_sagemaker_mp_enabled() \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mis_deepspeed_enabled \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mis_fsdp_enabled:\n",
1428
+ "\u001b[0;31mValueError\u001b[0m: No valid checkpoint found in output directory (IDEFICS3_ROCOv2)"
1429
+ ]
1430
+ }
1431
+ ],
1432
+ "source": [
1433
+ "trainer.train(resume_from_checkpoint=True)"
1434
+ ]
1435
+ },
1436
+ {
1437
+ "cell_type": "code",
1438
+ "execution_count": 15,
1439
+ "id": "bd15f877-ed10-4a6d-8b36-ebaaab875526",
1440
+ "metadata": {},
1441
+ "outputs": [
1442
+ {
1443
+ "name": "stdout",
1444
+ "output_type": "stream",
1445
+ "text": [
1446
+ "\n",
1447
+ "Copy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n",
1448
+ "\n",
1449
+ "- `transformers` version: 4.47.0.dev0\n",
1450
+ "- Platform: Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.31\n",
1451
+ "- Python version: 3.12.7\n",
1452
+ "- Huggingface_hub version: 0.26.2\n",
1453
+ "- Safetensors version: 0.4.5\n",
1454
+ "- Accelerate version: 1.1.1\n",
1455
+ "- Accelerate config: \tnot found\n",
1456
+ "- PyTorch version (GPU?): 2.5.1+cu124 (True)\n",
1457
+ "- Tensorflow version (GPU?): not installed (NA)\n",
1458
+ "- Flax version (CPU?/GPU?/TPU?): not installed (NA)\n",
1459
+ "- Jax version: not installed\n",
1460
+ "- JaxLib version: not installed\n",
1461
+ "- Using distributed or parallel set-up in script?: <fill in>\n",
1462
+ "- Using GPU in script?: <fill in>\n",
1463
+ "- GPU type: NVIDIA GeForce RTX 2060\n",
1464
+ "\n"
1465
+ ]
1466
+ }
1467
+ ],
1468
+ "source": [
1469
+ "!transformers-cli env"
1470
+ ]
1471
+ },
1472
+ {
1473
+ "cell_type": "code",
1474
+ "execution_count": null,
1475
+ "id": "f82b7c75-c859-451f-9c40-fe9a039bf769",
1476
+ "metadata": {},
1477
+ "outputs": [],
1478
+ "source": []
1479
+ }
1480
+ ],
1481
+ "metadata": {
1482
+ "kernelspec": {
1483
+ "display_name": "Python 3 (ipykernel)",
1484
+ "language": "python",
1485
+ "name": "python3"
1486
+ },
1487
+ "language_info": {
1488
+ "codemirror_mode": {
1489
+ "name": "ipython",
1490
+ "version": 3
1491
+ },
1492
+ "file_extension": ".py",
1493
+ "mimetype": "text/x-python",
1494
+ "name": "python",
1495
+ "nbconvert_exporter": "python",
1496
+ "pygments_lexer": "ipython3",
1497
+ "version": "3.12.7"
1498
+ }
1499
+ },
1500
+ "nbformat": 4,
1501
+ "nbformat_minor": 5
1502
+ }