librispeech / train_conformer_pretrain_w2v.yaml
emiyasstar's picture
Upload train_conformer_pretrain_w2v.yaml
9edce30
# network architecture
# encoder related
encoder: conformer
encoder_conf:
output_size: 512 # dimension of attention
attention_heads: 8
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.0
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
cnn_module_kernel: 31
use_cnn_module: True
activation_type: 'swish'
pos_enc_layer_type: 'rel_pos'
selfattention_layer_type: 'rel_selfattn'
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 8
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.0
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
ctc_weight: 1.0
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
# use raw_wav or kaldi feature
raw_wav: true
# dataset related
dataset_conf:
filter_conf:
max_length: 2000
min_length: 50
token_max_length: 400
token_min_length: 1
resample_conf:
resample_rate: 16000
speed_perturb: false
fbank_conf:
num_mel_bins: 80
frame_shift: 10
frame_length: 25
dither: 1.0
spec_aug: false
spec_aug_conf:
num_t_mask: 3
num_f_mask: 2
max_t: 50
max_f: 10
shuffle: true
shuffle_conf:
shuffle_size: 1500
sort: true
sort_conf:
sort_size: 500 # sort_size should be less than shuffle_size
batch_conf:
batch_type: 'dynamic' # static or dynamic
max_frames_in_batch: 20000
batch_size: 3
pretrain: True
wav2vec_conf:
pretrain: True
quantize_targets: True
project_targets: True
latent_vars: 320
latent_dim: 512
latent_groups: 2
w2v_ext_loss: True
w2v_loss_weights: [1.5,0]
mask: True
mask_prob: 0.65
grad_clip: 5
accum_grad: 4
max_epoch: 280
log_interval: 100
optim: adam
optim_conf:
lr: 0.002
scheduler: warmuplr # pytorch v1.1.0+ required
scheduler_conf:
warmup_steps: 25000