File size: 28,937 Bytes
b9eb078 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
'\nCopied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py\nupdate imports to use \'triton_pre_mlir\'\n\n*Experimental* implementation of FlashAttention in Triton.\nTested with triton==2.0.0.dev20221202.\nTriton 2.0 has a new backend (MLIR) but seems like it doesn\'t yet work for head dimensions\nother than 64:\nhttps://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207\nWe\'ll update this implementation with the new Triton backend once this is fixed.\n\nWe use the FlashAttention implementation from Phil Tillet a starting point.\nhttps://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py\n\nChanges:\n- Implement both causal and non-causal attention.\n- Implement both self-attention and cross-attention.\n- Support arbitrary seqlens (not just multiples of 128), for both forward and backward.\n- Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.\n- Support attention bias.\n- Speed up the forward pass a bit, and only store the LSE instead of m and l.\n- Make the backward for d=128 much faster by reducing register spilling.\n- Optionally parallelize the backward pass across seqlen_k, to deal with the case of\nsmall batch size * nheads.\n\nCaution:\n- This is an *experimental* implementation. The forward pass should be quite robust but\nI\'m not 100% sure that the backward pass doesn\'t have race conditions (due to the Triton compiler).\n- This implementation has only been tested on A100.\n- If you plan to use headdim other than 64 and 128, you should test for race conditions\n(due to the Triton compiler), as done in tests/test_flash_attn.py\n"test_flash_attn_triton_race_condition". I\'ve tested and fixed many race conditions\nfor different head dimensions (40, 48, 64, 128, 80, 88, 96), but I\'m still not 100% confident\nthat there are none left for other head dimensions.\n\nDifferences between this Triton version and the CUDA version:\n- Triton version doesn\'t support dropout.\n- Triton forward is generally faster than CUDA forward, while Triton backward is\ngenerally slower than CUDA backward. Overall Triton forward + backward is slightly slower\nthan CUDA forward + backward.\n- Triton version doesn\'t support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).\n- Triton version supports attention bias, while CUDA version doesn\'t.\n'
import math
import torch
import triton_pre_mlir as triton
import triton_pre_mlir.language as tl
@triton.heuristics({'EVEN_M': (lambda args: ((args['seqlen_q'] % args['BLOCK_M']) == 0)), 'EVEN_N': (lambda args: ((args['seqlen_k'] % args['BLOCK_N']) == 0)), 'EVEN_HEADDIM': (lambda args: (args['headdim'] == args['BLOCK_HEADDIM']))})
@triton.jit
def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
start_m = tl.program_id(0)
off_hb = tl.program_id(1)
off_b = (off_hb // nheads)
off_h = (off_hb % nheads)
offs_m = ((start_m * BLOCK_M) + tl.arange(0, BLOCK_M))
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_HEADDIM)
q_ptrs = (((Q + (off_b * stride_qb)) + (off_h * stride_qh)) + ((offs_m[:, None] * stride_qm) + offs_d[None, :]))
k_ptrs = (((K + (off_b * stride_kb)) + (off_h * stride_kh)) + ((offs_n[:, None] * stride_kn) + offs_d[None, :]))
v_ptrs = (((V + (off_b * stride_vb)) + (off_h * stride_vh)) + ((offs_n[:, None] * stride_vn) + offs_d[None, :]))
if (BIAS_TYPE == 'vector'):
b_ptrs = (((Bias + (off_b * stride_bb)) + (off_h * stride_bh)) + offs_n)
elif (BIAS_TYPE == 'matrix'):
b_ptrs = (((Bias + (off_b * stride_bb)) + (off_h * stride_bh)) + ((offs_m[:, None] * stride_bm) + offs_n[None, :]))
t_ptrs = ((TMP + (off_hb * seqlen_q_rounded)) + offs_m)
lse_i = (tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf'))
m_i = (tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf'))
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
if (EVEN_M & EVEN_N):
if EVEN_HEADDIM:
q = tl.load(q_ptrs)
else:
q = tl.load(q_ptrs, mask=(offs_d[None, :] < headdim), other=0.0)
elif EVEN_HEADDIM:
q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q), other=0.0)
else:
q = tl.load(q_ptrs, mask=((offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)), other=0.0)
end_n = (seqlen_k if (not IS_CAUSAL) else tl.minimum(((start_m + 1) * BLOCK_M), seqlen_k))
for start_n in range(0, end_n, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
if (EVEN_N & EVEN_M):
if EVEN_HEADDIM:
k = tl.load((k_ptrs + (start_n * stride_kn)))
else:
k = tl.load((k_ptrs + (start_n * stride_kn)), mask=(offs_d[None, :] < headdim), other=0.0)
elif EVEN_HEADDIM:
k = tl.load((k_ptrs + (start_n * stride_kn)), mask=((start_n + offs_n)[:, None] < seqlen_k), other=0.0)
else:
k = tl.load((k_ptrs + (start_n * stride_kn)), mask=(((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim)), other=0.0)
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, k, trans_b=True)
if (not EVEN_N):
qk += tl.where(((start_n + offs_n)[None, :] < seqlen_k), 0, float('-inf'))
if IS_CAUSAL:
qk += tl.where((offs_m[:, None] >= (start_n + offs_n)[None, :]), 0, float('-inf'))
if (BIAS_TYPE != 'none'):
if (BIAS_TYPE == 'vector'):
if EVEN_N:
bias = tl.load((b_ptrs + start_n)).to(tl.float32)
else:
bias = tl.load((b_ptrs + start_n), mask=((start_n + offs_n) < seqlen_k), other=0.0).to(tl.float32)
bias = bias[None, :]
elif (BIAS_TYPE == 'matrix'):
if (EVEN_M & EVEN_N):
bias = tl.load((b_ptrs + start_n)).to(tl.float32)
else:
bias = tl.load((b_ptrs + start_n), mask=((offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k)), other=0.0).to(tl.float32)
qk = ((qk * softmax_scale) + bias)
m_ij = tl.maximum(tl.max(qk, 1), lse_i)
p = tl.exp((qk - m_ij[:, None]))
else:
m_ij = tl.maximum((tl.max(qk, 1) * softmax_scale), lse_i)
p = tl.exp(((qk * softmax_scale) - m_ij[:, None]))
l_ij = tl.sum(p, 1)
acc_o_scale = tl.exp((m_i - m_ij))
tl.store(t_ptrs, acc_o_scale)
acc_o_scale = tl.load(t_ptrs)
acc_o = (acc_o * acc_o_scale[:, None])
if (EVEN_N & EVEN_M):
if EVEN_HEADDIM:
v = tl.load((v_ptrs + (start_n * stride_vn)))
else:
v = tl.load((v_ptrs + (start_n * stride_vn)), mask=(offs_d[None, :] < headdim), other=0.0)
elif EVEN_HEADDIM:
v = tl.load((v_ptrs + (start_n * stride_vn)), mask=((start_n + offs_n)[:, None] < seqlen_k), other=0.0)
else:
v = tl.load((v_ptrs + (start_n * stride_vn)), mask=(((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim)), other=0.0)
p = p.to(v.dtype)
acc_o += tl.dot(p, v)
m_i = m_ij
l_i_new = (tl.exp((lse_i - m_ij)) + l_ij)
lse_i = (m_ij + tl.log(l_i_new))
o_scale = tl.exp((m_i - lse_i))
tl.store(t_ptrs, o_scale)
o_scale = tl.load(t_ptrs)
acc_o = (acc_o * o_scale[:, None])
start_m = tl.program_id(0)
offs_m = ((start_m * BLOCK_M) + tl.arange(0, BLOCK_M))
lse_ptrs = ((Lse + (off_hb * seqlen_q_rounded)) + offs_m)
tl.store(lse_ptrs, lse_i)
offs_d = tl.arange(0, BLOCK_HEADDIM)
out_ptrs = (((Out + (off_b * stride_ob)) + (off_h * stride_oh)) + ((offs_m[:, None] * stride_om) + offs_d[None, :]))
if EVEN_M:
if EVEN_HEADDIM:
tl.store(out_ptrs, acc_o)
else:
tl.store(out_ptrs, acc_o, mask=(offs_d[None, :] < headdim))
elif EVEN_HEADDIM:
tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q))
else:
tl.store(out_ptrs, acc_o, mask=((offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)))
@triton.jit
def _bwd_preprocess_do_o_dot(Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr):
start_m = tl.program_id(0)
off_hb = tl.program_id(1)
off_b = (off_hb // nheads)
off_h = (off_hb % nheads)
offs_m = ((start_m * BLOCK_M) + tl.arange(0, BLOCK_M))
offs_d = tl.arange(0, BLOCK_HEADDIM)
o = tl.load(((((Out + (off_b * stride_ob)) + (off_h * stride_oh)) + (offs_m[:, None] * stride_om)) + offs_d[None, :]), mask=((offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)), other=0.0).to(tl.float32)
do = tl.load(((((DO + (off_b * stride_dob)) + (off_h * stride_doh)) + (offs_m[:, None] * stride_dom)) + offs_d[None, :]), mask=((offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)), other=0.0).to(tl.float32)
delta = tl.sum((o * do), axis=1)
tl.store(((Delta + (off_hb * seqlen_q_rounded)) + offs_m), delta)
@triton.jit
def _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr):
if (EVEN_N & EVEN_M):
if EVEN_HEADDIM:
tl.store(dv_ptrs, dv)
tl.store(dk_ptrs, dk)
else:
tl.store(dv_ptrs, dv, mask=(offs_d[None, :] < headdim))
tl.store(dk_ptrs, dk, mask=(offs_d[None, :] < headdim))
elif EVEN_HEADDIM:
tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k))
tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k))
else:
tl.store(dv_ptrs, dv, mask=((offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)))
tl.store(dk_ptrs, dk, mask=((offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)))
@triton.jit
def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
begin_m = (0 if (not IS_CAUSAL) else (((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M))
offs_qm = (begin_m + tl.arange(0, BLOCK_M))
offs_n = ((start_n * BLOCK_N) + tl.arange(0, BLOCK_N))
offs_m = tl.arange(0, BLOCK_M)
offs_d = tl.arange(0, BLOCK_HEADDIM)
q_ptrs = (Q + ((offs_qm[:, None] * stride_qm) + offs_d[None, :]))
k_ptrs = (K + ((offs_n[:, None] * stride_kn) + offs_d[None, :]))
v_ptrs = (V + ((offs_n[:, None] * stride_vn) + offs_d[None, :]))
do_ptrs = (DO + ((offs_qm[:, None] * stride_dom) + offs_d[None, :]))
dq_ptrs = (DQ + ((offs_qm[:, None] * stride_dqm) + offs_d[None, :]))
if (BIAS_TYPE == 'vector'):
b_ptrs = (Bias + offs_n)
elif (BIAS_TYPE == 'matrix'):
b_ptrs = (Bias + ((offs_qm[:, None] * stride_bm) + offs_n[None, :]))
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
if (begin_m >= seqlen_q):
dv_ptrs = (DV + ((offs_n[:, None] * stride_dvn) + offs_d[None, :]))
dk_ptrs = (DK + ((offs_n[:, None] * stride_dkn) + offs_d[None, :]))
_bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
return
if (EVEN_N & EVEN_M):
if EVEN_HEADDIM:
k = tl.load(k_ptrs)
v = tl.load(v_ptrs)
else:
k = tl.load(k_ptrs, mask=(offs_d[None, :] < headdim), other=0.0)
v = tl.load(v_ptrs, mask=(offs_d[None, :] < headdim), other=0.0)
elif EVEN_HEADDIM:
k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k), other=0.0)
v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k), other=0.0)
else:
k = tl.load(k_ptrs, mask=((offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)), other=0.0)
v = tl.load(v_ptrs, mask=((offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)), other=0.0)
num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
for start_m in range(begin_m, (num_block_m * BLOCK_M), BLOCK_M):
start_m = tl.multiple_of(start_m, BLOCK_M)
offs_m_curr = (start_m + offs_m)
if (EVEN_M & EVEN_HEADDIM):
q = tl.load(q_ptrs)
elif EVEN_HEADDIM:
q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q), other=0.0)
else:
q = tl.load(q_ptrs, mask=((offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim)), other=0.0)
qk = tl.dot(q, k, trans_b=True)
if (not EVEN_N):
qk = tl.where((offs_n[None, :] < seqlen_k), qk, float('-inf'))
if IS_CAUSAL:
qk = tl.where((offs_m_curr[:, None] >= offs_n[None, :]), qk, float('-inf'))
if (BIAS_TYPE != 'none'):
tl.debug_barrier()
if (BIAS_TYPE == 'vector'):
if EVEN_N:
bias = tl.load(b_ptrs).to(tl.float32)
else:
bias = tl.load(b_ptrs, mask=(offs_n < seqlen_k), other=0.0).to(tl.float32)
bias = bias[None, :]
elif (BIAS_TYPE == 'matrix'):
if (EVEN_M & EVEN_N):
bias = tl.load(b_ptrs).to(tl.float32)
else:
bias = tl.load(b_ptrs, mask=((offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k)), other=0.0).to(tl.float32)
qk = ((qk * softmax_scale) + bias)
if (not (EVEN_M & EVEN_HEADDIM)):
tl.debug_barrier()
lse_i = tl.load((LSE + offs_m_curr))
if (BIAS_TYPE == 'none'):
p = tl.exp(((qk * softmax_scale) - lse_i[:, None]))
else:
p = tl.exp((qk - lse_i[:, None]))
if (EVEN_M & EVEN_HEADDIM):
do = tl.load(do_ptrs)
else:
do = tl.load(do_ptrs, mask=((offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim)), other=0.0)
dv += tl.dot(p.to(do.dtype), do, trans_a=True)
if (not (EVEN_M & EVEN_HEADDIM)):
tl.debug_barrier()
dp = tl.dot(do, v, trans_b=True)
if (not EVEN_HEADDIM):
tl.debug_barrier()
Di = tl.load((D + offs_m_curr))
ds = ((p * (dp - Di[:, None])) * softmax_scale).to(q.dtype)
dk += tl.dot(ds, q, trans_a=True)
if (not (EVEN_M & EVEN_HEADDIM)):
tl.debug_barrier()
if (not ATOMIC_ADD):
if (EVEN_M & EVEN_HEADDIM):
dq = tl.load(dq_ptrs, eviction_policy='evict_last')
dq += tl.dot(ds, k)
tl.store(dq_ptrs, dq, eviction_policy='evict_last')
elif EVEN_HEADDIM:
dq = tl.load(dq_ptrs, mask=(offs_m_curr[:, None] < seqlen_q), other=0.0, eviction_policy='evict_last')
dq += tl.dot(ds, k)
tl.store(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q), eviction_policy='evict_last')
else:
dq = tl.load(dq_ptrs, mask=((offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim)), other=0.0, eviction_policy='evict_last')
dq += tl.dot(ds, k)
tl.store(dq_ptrs, dq, mask=((offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim)), eviction_policy='evict_last')
else:
dq = tl.dot(ds, k)
if (EVEN_M & EVEN_HEADDIM):
tl.atomic_add(dq_ptrs, dq)
elif EVEN_HEADDIM:
tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q))
else:
tl.atomic_add(dq_ptrs, dq, mask=((offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim)))
dq_ptrs += (BLOCK_M * stride_dqm)
q_ptrs += (BLOCK_M * stride_qm)
do_ptrs += (BLOCK_M * stride_dom)
if (BIAS_TYPE == 'matrix'):
b_ptrs += (BLOCK_M * stride_bm)
dv_ptrs = (DV + ((offs_n[:, None] * stride_dvn) + offs_d[None, :]))
dk_ptrs = (DK + ((offs_n[:, None] * stride_dkn) + offs_d[None, :]))
_bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
def init_to_zero(name):
return (lambda nargs: nargs[name].zero_())
@triton.autotune(configs=[triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ'))], key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'])
@triton.heuristics({'EVEN_M': (lambda args: ((args['seqlen_q'] % args['BLOCK_M']) == 0)), 'EVEN_N': (lambda args: ((args['seqlen_k'] % args['BLOCK_N']) == 0)), 'EVEN_HEADDIM': (lambda args: (args['headdim'] == args['BLOCK_HEADDIM']))})
@triton.jit
def _bwd_kernel(Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
off_hb = tl.program_id(1)
off_b = (off_hb // nheads)
off_h = (off_hb % nheads)
Q += ((off_b * stride_qb) + (off_h * stride_qh))
K += ((off_b * stride_kb) + (off_h * stride_kh))
V += ((off_b * stride_vb) + (off_h * stride_vh))
DO += ((off_b * stride_dob) + (off_h * stride_doh))
DQ += ((off_b * stride_dqb) + (off_h * stride_dqh))
DK += ((off_b * stride_dkb) + (off_h * stride_dkh))
DV += ((off_b * stride_dvb) + (off_h * stride_dvh))
if (BIAS_TYPE != 'none'):
Bias += ((off_b * stride_bb) + (off_h * stride_bh))
D += (off_hb * seqlen_q_rounded)
LSE += (off_hb * seqlen_q_rounded)
if (not SEQUENCE_PARALLEL):
num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
for start_n in range(0, num_block_n):
_bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=False, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
else:
start_n = tl.program_id(0)
_bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=True, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
(batch, seqlen_q, nheads, d) = q.shape
(_, seqlen_k, _, _) = k.shape
assert (k.shape == (batch, seqlen_k, nheads, d))
assert (v.shape == (batch, seqlen_k, nheads, d))
assert (d <= 128), 'FlashAttention only support head dimensions up to 128'
assert (q.dtype == k.dtype == v.dtype), 'All tensors must have the same type'
assert (q.dtype in [torch.float16, torch.bfloat16]), 'Only support fp16 and bf16'
assert (q.is_cuda and k.is_cuda and v.is_cuda)
softmax_scale = (softmax_scale or (1.0 / math.sqrt(d)))
has_bias = (bias is not None)
bias_type = 'none'
if has_bias:
assert (bias.dtype in [q.dtype, torch.float])
assert bias.is_cuda
assert (bias.dim() == 4)
if (bias.stride((- 1)) != 1):
bias = bias.contiguous()
if (bias.shape[2:] == (1, seqlen_k)):
bias_type = 'vector'
elif (bias.shape[2:] == (seqlen_q, seqlen_k)):
bias_type = 'matrix'
else:
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
bias_strides = ((bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0))
seqlen_q_rounded = (math.ceil((seqlen_q / 128)) * 128)
lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
o = torch.empty_like(q)
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
BLOCK = 128
num_warps = (4 if (d <= 64) else 8)
grid = (lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), (batch * nheads)))
_fwd_kernel[grid](q, k, v, bias, o, lse, tmp, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, o.stride(0), o.stride(2), o.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, (seqlen_q // 32), (seqlen_k // 32), bias_type, causal, BLOCK_HEADDIM, BLOCK_M=BLOCK, BLOCK_N=BLOCK, num_warps=num_warps, num_stages=1)
return (o, lse, softmax_scale)
def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None):
if (do.stride((- 1)) != 1):
do = do.contiguous()
(batch, seqlen_q, nheads, d) = q.shape
(_, seqlen_k, _, _) = k.shape
assert (d <= 128)
seqlen_q_rounded = (math.ceil((seqlen_q / 128)) * 128)
assert (lse.shape == (batch, nheads, seqlen_q_rounded))
assert (q.stride((- 1)) == k.stride((- 1)) == v.stride((- 1)) == o.stride((- 1)) == 1)
assert (dq.stride((- 1)) == dk.stride((- 1)) == dv.stride((- 1)) == 1)
softmax_scale = (softmax_scale or (1.0 / math.sqrt(d)))
dq_accum = torch.empty_like(q, dtype=torch.float32)
delta = torch.empty_like(lse)
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
grid = (lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), (batch * nheads)))
_bwd_preprocess_do_o_dot[grid](o, do, delta, o.stride(0), o.stride(2), o.stride(1), do.stride(0), do.stride(2), do.stride(1), nheads, seqlen_q, seqlen_q_rounded, d, BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM)
has_bias = (bias is not None)
bias_type = 'none'
if has_bias:
assert (bias.dtype in [q.dtype, torch.float])
assert bias.is_cuda
assert (bias.dim() == 4)
assert (bias.stride((- 1)) == 1)
if (bias.shape[2:] == (1, seqlen_k)):
bias_type = 'vector'
elif (bias.shape[2:] == (seqlen_q, seqlen_k)):
bias_type = 'matrix'
else:
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
bias_strides = ((bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0))
grid = (lambda META: ((triton.cdiv(seqlen_k, META['BLOCK_N']) if META['SEQUENCE_PARALLEL'] else 1), (batch * nheads)))
_bwd_kernel[grid](q, k, v, bias, do, dq_accum, dk, dv, lse, delta, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, do.stride(0), do.stride(2), do.stride(1), dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1), dk.stride(0), dk.stride(2), dk.stride(1), dv.stride(0), dv.stride(2), dv.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, (seqlen_q // 32), (seqlen_k // 32), bias_type, causal, BLOCK_HEADDIM)
dq.copy_(dq_accum)
class FlashAttnQKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
'\n qkv: (batch, seqlen, 3, nheads, headdim)\n bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).\n For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).\n ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)\n '
if (qkv.stride((- 1)) != 1):
qkv = qkv.contiguous()
(o, lse, ctx.softmax_scale) = _flash_attn_forward(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal, softmax_scale=softmax_scale)
ctx.save_for_backward(qkv, o, lse, bias)
ctx.causal = causal
return o
@staticmethod
def backward(ctx, do):
(qkv, o, lse, bias) = ctx.saved_tensors
assert (not ctx.needs_input_grad[1]), 'FlashAttention does not support bias gradient yet'
with torch.inference_mode():
dqkv = torch.empty_like(qkv)
_flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
return (dqkv, None, None, None)
flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
class FlashAttnKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
'\n q: (batch, seqlen_q, nheads, headdim)\n kv: (batch, seqlen_k, 2, nheads, headdim)\n bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).\n For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).\n ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)\n '
(q, kv) = [(x if (x.stride((- 1)) == 1) else x.contiguous()) for x in [q, kv]]
(o, lse, ctx.softmax_scale) = _flash_attn_forward(q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale)
ctx.save_for_backward(q, kv, o, lse, bias)
ctx.causal = causal
return o
@staticmethod
def backward(ctx, do):
(q, kv, o, lse, bias) = ctx.saved_tensors
if (len(ctx.needs_input_grad) >= 3):
assert (not ctx.needs_input_grad[2]), 'FlashAttention does not support bias gradient yet'
with torch.inference_mode():
dq = torch.empty_like(q)
dkv = torch.empty_like(kv)
_flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse, dq, dkv[:, :, 0], dkv[:, :, 1], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
return (dq, dkv, None, None, None)
flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
class FlashAttnFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
'\n q: (batch_size, seqlen_q, nheads, headdim)\n k, v: (batch_size, seqlen_k, nheads, headdim)\n bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).\n For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).\n ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)\n '
(q, k, v) = [(x if (x.stride((- 1)) == 1) else x.contiguous()) for x in [q, k, v]]
(o, lse, ctx.softmax_scale) = _flash_attn_forward(q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale)
ctx.save_for_backward(q, k, v, o, lse, bias)
ctx.causal = causal
return o
@staticmethod
def backward(ctx, do):
(q, k, v, o, lse, bias) = ctx.saved_tensors
assert (not ctx.needs_input_grad[3]), 'FlashAttention does not support bias gradient yet'
with torch.inference_mode():
dq = torch.empty_like(q)
dk = torch.empty_like(k)
dv = torch.empty_like(v)
_flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
return (dq, dk, dv, None, None, None)
flash_attn_func = FlashAttnFunc.apply
|