|
"""Attention layers.""" |
|
import math |
|
import warnings |
|
from typing import Optional, Dict, Any, NamedTuple, Protocol, Tuple, Union |
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
from packaging import version |
|
from torch import nn |
|
from torch.utils.checkpoint import checkpoint |
|
from .norm import LPLayerNorm |
|
from .is_torch_version import is_torch_version |
|
|
|
class PastKeyValue(NamedTuple): |
|
key: torch.Tensor |
|
value: torch.Tensor |
|
|
|
class AttnFnOutput(NamedTuple): |
|
attns: torch.Tensor |
|
attn_probs: Optional[torch.Tensor] |
|
past_key_value: Union[PastKeyValue, Tuple, None] |
|
|
|
class AttnFn(Protocol): |
|
def __call__( |
|
self, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
n_heads: int, |
|
softmax_scale: Optional[float] = None, |
|
attn_bias: Optional[torch.Tensor] = None, |
|
key_padding_mask: Optional[torch.ByteTensor] = None, |
|
is_causal = False, |
|
dropout_p = 0.0, |
|
training = False, |
|
needs_weights = False, |
|
multiquery = False, |
|
) -> AttnFnOutput: ... |
|
|
|
class AttnFnCheckpointed(Protocol): |
|
def __call__( |
|
self, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
n_heads: int, |
|
softmax_scale: Optional[float], |
|
attn_bias: Optional[torch.Tensor], |
|
key_padding_mask: Optional[torch.ByteTensor], |
|
is_causal: bool, |
|
dropout_p: float, |
|
training: bool, |
|
needs_weights: bool, |
|
) -> AttnFnOutput: ... |
|
|
|
class AttnOutput(NamedTuple): |
|
projected_context: torch.Tensor |
|
attn_weights: Optional[torch.Tensor] |
|
past_key_value: Union[PastKeyValue, Tuple, None] |
|
|
|
class Attn(Protocol): |
|
def __call__( |
|
self, |
|
x: torch.Tensor, |
|
past_key_value: Union[PastKeyValue, Tuple, None] = None, |
|
attn_bias: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
is_causal = True, |
|
needs_weights = False, |
|
) -> AttnOutput: ... |
|
|
|
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool): |
|
if original_is_causal and num_query_tokens != num_key_tokens: |
|
if num_query_tokens != 1: |
|
raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.') |
|
else: |
|
return False |
|
return original_is_causal |
|
|
|
def scaled_multihead_dot_product_attention( |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
n_heads: int, |
|
past_key_value=None, |
|
softmax_scale: Optional[float] = None, |
|
attn_bias: Optional[torch.Tensor] = None, |
|
key_padding_mask: Optional[torch.ByteTensor] = None, |
|
is_causal = False, |
|
dropout_p = 0.0, |
|
training = False, |
|
needs_weights = False, |
|
multiquery = False, |
|
) -> AttnFnOutput: |
|
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads) |
|
kv_n_heads = 1 if multiquery else n_heads |
|
k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads) |
|
v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads) |
|
|
|
if past_key_value is not None: |
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(past_key_value) != 0: |
|
k = torch.cat([past_key_value[0], k], dim=3) |
|
v = torch.cat([past_key_value[1], v], dim=2) |
|
|
|
past_key_value = (k, v) |
|
(b, _, s_q, d) = q.shape |
|
s_k = k.size(-1) |
|
if softmax_scale is None: |
|
softmax_scale = 1 / math.sqrt(d) |
|
attn_weight = q.matmul(k) * softmax_scale |
|
if attn_bias is not None: |
|
|
|
_s_q = max(0, attn_bias.size(2) - s_q) |
|
_s_k = max(0, attn_bias.size(3) - s_k) |
|
attn_bias = attn_bias[:, :, _s_q:, _s_k:] |
|
if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q): |
|
raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.') |
|
attn_weight = attn_weight + attn_bias |
|
min_val = torch.finfo(q.dtype).min |
|
if key_padding_mask is not None: |
|
if attn_bias is not None: |
|
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unneccessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.') |
|
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val) |
|
if is_causal and (not q.size(2) == 1): |
|
s = max(s_q, s_k) |
|
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16) |
|
causal_mask = causal_mask.tril() |
|
causal_mask = causal_mask.to(torch.bool) |
|
causal_mask = ~causal_mask |
|
causal_mask = causal_mask[-s_q:, -s_k:] |
|
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val) |
|
attn_weight = torch.softmax(attn_weight, dim=-1) |
|
if dropout_p: |
|
attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True) |
|
out = attn_weight.matmul(v) |
|
out = rearrange(out, 'b h s d -> b s (h d)') |
|
if needs_weights: |
|
return AttnFnOutput(out, attn_weight, past_key_value) |
|
return AttnFnOutput(out, None, past_key_value) |
|
|
|
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]): |
|
for tensor in tensors: |
|
if tensor.dtype not in valid_dtypes: |
|
raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.') |
|
if not tensor.is_cuda: |
|
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).') |
|
|
|
def flash_attn_fn( |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
n_heads: int, |
|
past_key_value=None, |
|
softmax_scale: Optional[float] = None, |
|
attn_bias: Optional[torch.Tensor] = None, |
|
key_padding_mask: Optional[torch.ByteTensor] = None, |
|
is_causal = False, |
|
dropout_p = 0.0, |
|
training = False, |
|
needs_weights = False, |
|
multiquery = False, |
|
) -> AttnFnOutput: |
|
try: |
|
from flash_attn import bert_padding, flash_attn_interface |
|
except: |
|
raise RuntimeError('Please install flash-attn==1.0.3.post0') |
|
check_valid_inputs(query, key, value) |
|
if past_key_value is not None: |
|
if len(past_key_value) != 0: |
|
key = torch.cat([past_key_value[0], key], dim=1) |
|
value = torch.cat([past_key_value[1], value], dim=1) |
|
|
|
past_key_value = (key, value) |
|
|
|
if attn_bias is not None: |
|
|
|
_s_q = max(0, attn_bias.size(2) - query.size(1)) |
|
_s_k = max(0, attn_bias.size(3) - key.size(1)) |
|
attn_bias = attn_bias[:, :, _s_q:, _s_k:] |
|
if attn_bias is not None: |
|
raise NotImplementedError(f'attn_bias not implemented for flash attn.') |
|
(batch_size, seqlen) = query.shape[:2] |
|
if key_padding_mask is None: |
|
key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool) |
|
query_padding_mask = key_padding_mask[:, -query.size(1):] |
|
(query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask) |
|
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads) |
|
(key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask) |
|
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads) |
|
(value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask) |
|
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads) |
|
if multiquery: |
|
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1)) |
|
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1)) |
|
dropout_p = dropout_p if training else 0.0 |
|
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) |
|
output_unpad = flash_attn_interface.flash_attn_unpadded_func(query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights) |
|
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen) |
|
return AttnFnOutput(output, None, past_key_value) |
|
|
|
def triton_flash_attn_fn( |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
n_heads: int, |
|
past_key_value=None, |
|
softmax_scale: Optional[float] = None, |
|
attn_bias: Optional[torch.Tensor] = None, |
|
key_padding_mask: Optional[torch.ByteTensor] = None, |
|
is_causal = False, |
|
dropout_p = 0.0, |
|
training = False, |
|
needs_weights = False, |
|
multiquery = False, |
|
) -> AttnFnOutput: |
|
try: |
|
from .flash_attn_triton import flash_attn_func |
|
except: |
|
_installed = False |
|
if version.parse(torch.__version__) < version.parse('2.0.0'): |
|
_installed = True |
|
try: |
|
from flash_attn.flash_attn_triton import flash_attn_func |
|
except: |
|
_installed = False |
|
if not _installed: |
|
raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU and `pip install .[gpu]` if installing from llm-foundry source or `pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). Note: (1) requires you have CMake and PyTorch already installed.') |
|
check_valid_inputs(query, key, value) |
|
if past_key_value is not None: |
|
if len(past_key_value) != 0: |
|
key = torch.cat([past_key_value[0], key], dim=1) |
|
value = torch.cat([past_key_value[1], value], dim=1) |
|
|
|
past_key_value = (key, value) |
|
|
|
if attn_bias is not None: |
|
|
|
_s_q = max(0, attn_bias.size(2) - query.size(1)) |
|
_s_k = max(0, attn_bias.size(3) - key.size(1)) |
|
attn_bias = attn_bias[:, :, _s_q:, _s_k:] |
|
if dropout_p: |
|
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.') |
|
if needs_weights: |
|
raise NotImplementedError(f'attn_impl: triton cannot return attn weights.') |
|
if key_padding_mask is not None: |
|
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.') |
|
(b_size, s_k) = key_padding_mask.shape[:2] |
|
if attn_bias is None: |
|
attn_bias = query.new_zeros(b_size, 1, 1, s_k) |
|
attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min) |
|
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads) |
|
key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads) |
|
value = rearrange(value, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads) |
|
if multiquery: |
|
key = key.expand(*key.shape[:2], n_heads, key.size(-1)) |
|
value = value.expand(*value.shape[:2], n_heads, value.size(-1)) |
|
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) |
|
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale) |
|
output = attn_output.view(*attn_output.shape[:2], -1) |
|
return AttnFnOutput(output, None, past_key_value) |
|
|
|
class MultiheadAttention(nn.Module, Attn): |
|
"""Multi-head self attention. |
|
|
|
Using torch or triton attention implemetation enables user to also use |
|
additive bias. |
|
""" |
|
gradient_checkpointing = False |
|
attn_fn: AttnFn |
|
|
|
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None): |
|
super().__init__() |
|
self.attn_impl = attn_impl |
|
self.clip_qkv = clip_qkv |
|
self.qk_ln = qk_ln |
|
self.d_model = d_model |
|
self.n_heads = n_heads |
|
self.softmax_scale = softmax_scale |
|
if self.softmax_scale is None: |
|
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads) |
|
self.attn_dropout_p = attn_pdrop |
|
self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device) |
|
fuse_splits = (d_model, 2 * d_model) |
|
self.Wqkv._fused = (0, fuse_splits) |
|
if self.qk_ln: |
|
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm |
|
self.q_ln = layernorm_class(self.d_model, device=device) |
|
self.k_ln = layernorm_class(self.d_model, device=device) |
|
if self.attn_impl == 'flash': |
|
self.attn_fn = flash_attn_fn |
|
elif self.attn_impl == 'triton': |
|
self.attn_fn = triton_flash_attn_fn |
|
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.') |
|
elif self.attn_impl == 'torch': |
|
self.attn_fn = scaled_multihead_dot_product_attention |
|
if torch.cuda.is_available(): |
|
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.') |
|
else: |
|
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') |
|
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device) |
|
self.out_proj._is_residual = True |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
past_key_value: Union[PastKeyValue, Tuple, None] = None, |
|
attn_bias: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
is_causal = True, |
|
needs_weights = False, |
|
) -> AttnOutput: |
|
qkv = self.Wqkv(x) |
|
if self.clip_qkv: |
|
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) |
|
(query, key, value) = qkv.chunk(3, dim=2) |
|
key_padding_mask = attention_mask |
|
if self.qk_ln: |
|
dtype = query.dtype |
|
query = self.q_ln(query).to(dtype) |
|
key = self.k_ln(key).to(dtype) |
|
if self.training and self.gradient_checkpointing: |
|
ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} |
|
def create_custom_forward(attn_fn: AttnFn) -> AttnFnCheckpointed: |
|
def custom_forward( |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
n_heads: int, |
|
softmax_scale: Optional[float], |
|
attn_bias: Optional[torch.Tensor], |
|
key_padding_mask: Optional[torch.ByteTensor], |
|
is_causal: bool, |
|
dropout_p: float, |
|
training: bool, |
|
needs_weights: bool, |
|
): |
|
return attn_fn( |
|
query, |
|
key, |
|
value, |
|
n_heads, |
|
softmax_scale, |
|
attn_bias, |
|
key_padding_mask, |
|
is_causal, |
|
dropout_p, |
|
training, |
|
needs_weights, |
|
False, |
|
) |
|
return custom_forward |
|
attn_fn_out: AttnFnOutput = checkpoint( |
|
create_custom_forward(self.attn_fn), |
|
query, |
|
key, |
|
value, |
|
self.n_heads, |
|
self.softmax_scale, |
|
attn_bias, |
|
key_padding_mask, |
|
is_causal, |
|
self.attn_dropout_p, |
|
self.training, |
|
needs_weights, |
|
**ckpt_kwargs, |
|
) |
|
else: |
|
attn_fn_out: AttnFnOutput = self.attn_fn( |
|
query, |
|
key, |
|
value, |
|
self.n_heads, |
|
past_key_value=past_key_value, |
|
softmax_scale=self.softmax_scale, |
|
attn_bias=attn_bias, |
|
key_padding_mask=key_padding_mask, |
|
is_causal=is_causal, |
|
dropout_p=self.attn_dropout_p, |
|
training=self.training, |
|
needs_weights=needs_weights, |
|
) |
|
context, attn_weights, past_key_value = attn_fn_out |
|
return AttnOutput(self.out_proj(context), attn_weights, past_key_value) |
|
|
|
class MultiQueryAttention(nn.Module, Attn): |
|
"""Multi-Query self attention. |
|
|
|
Using torch or triton attention implemetation enables user to also use |
|
additive bias. |
|
""" |
|
|
|
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None): |
|
super().__init__() |
|
self.attn_impl = attn_impl |
|
self.clip_qkv = clip_qkv |
|
self.qk_ln = qk_ln |
|
self.d_model = d_model |
|
self.n_heads = n_heads |
|
self.head_dim = d_model // n_heads |
|
self.softmax_scale = softmax_scale |
|
if self.softmax_scale is None: |
|
self.softmax_scale = 1 / math.sqrt(self.head_dim) |
|
self.attn_dropout_p = attn_pdrop |
|
self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device) |
|
fuse_splits = (d_model, d_model + self.head_dim) |
|
self.Wqkv._fused = (0, fuse_splits) |
|
if self.qk_ln: |
|
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm |
|
self.q_ln = layernorm_class(d_model, device=device) |
|
self.k_ln = layernorm_class(self.head_dim, device=device) |
|
if self.attn_impl == 'flash': |
|
self.attn_fn = flash_attn_fn |
|
elif self.attn_impl == 'triton': |
|
self.attn_fn = triton_flash_attn_fn |
|
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.') |
|
elif self.attn_impl == 'torch': |
|
self.attn_fn = scaled_multihead_dot_product_attention |
|
if torch.cuda.is_available(): |
|
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.') |
|
else: |
|
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') |
|
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device) |
|
self.out_proj._is_residual = True |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
past_key_value: Union[PastKeyValue, Tuple, None] = None, |
|
attn_bias: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
is_causal = True, |
|
needs_weights = False, |
|
) -> AttnOutput: |
|
qkv = self.Wqkv(x) |
|
if self.clip_qkv: |
|
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) |
|
(query, key, value) = qkv.split([self.d_model, self.head_dim, self.head_dim], dim=2) |
|
key_padding_mask = attention_mask |
|
if self.qk_ln: |
|
dtype = query.dtype |
|
query = self.q_ln(query).to(dtype) |
|
key = self.k_ln(key).to(dtype) |
|
if past_key_value is not None: |
|
if len(past_key_value) != 0: |
|
key = torch.cat([past_key_value[0], key], dim=1) |
|
value = torch.cat([past_key_value[1], value], dim=1) |
|
past_key_value = PastKeyValue(key, value) |
|
if attn_bias is not None: |
|
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):] |
|
if self.training and self.gradient_checkpointing: |
|
ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} |
|
def create_custom_forward(attn_fn: AttnFn) -> AttnFnCheckpointed: |
|
def custom_forward( |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
n_heads: int, |
|
softmax_scale: Optional[float], |
|
attn_bias: Optional[torch.Tensor], |
|
key_padding_mask: Optional[torch.ByteTensor], |
|
is_causal: bool, |
|
dropout_p: float, |
|
training: bool, |
|
needs_weights: bool, |
|
): |
|
return attn_fn( |
|
query, |
|
key, |
|
value, |
|
n_heads, |
|
softmax_scale, |
|
attn_bias, |
|
key_padding_mask, |
|
is_causal, |
|
dropout_p, |
|
training, |
|
needs_weights, |
|
True, |
|
) |
|
return custom_forward |
|
attn_fn_out: AttnFnOutput = checkpoint( |
|
create_custom_forward(self.attn_fn), |
|
query, |
|
key, |
|
value, |
|
self.n_heads, |
|
self.softmax_scale, |
|
attn_bias, |
|
key_padding_mask, |
|
is_causal, |
|
self.attn_dropout_p, |
|
self.training, |
|
needs_weights, |
|
**ckpt_kwargs, |
|
) |
|
else: |
|
attn_fn_out: AttnFnOutput = self.attn_fn( |
|
query, |
|
key, |
|
value, |
|
self.n_heads, |
|
past_key_value=past_key_value, |
|
softmax_scale=self.softmax_scale, |
|
attn_bias=attn_bias, |
|
key_padding_mask=key_padding_mask, |
|
is_causal=is_causal, |
|
dropout_p=self.attn_dropout_p, |
|
training=self.training, |
|
needs_weights=needs_weights, |
|
) |
|
context, attn_weights = attn_fn_out |
|
return AttnOutput(self.out_proj(context), attn_weights, past_key_value) |
|
|
|
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id): |
|
if attn_impl == 'flash': |
|
return None |
|
elif attn_impl in ['torch', 'triton']: |
|
if alibi: |
|
if (prefix_lm or not causal) or use_sequence_id: |
|
return (1, n_heads, seq_len, seq_len) |
|
return (1, n_heads, 1, seq_len) |
|
elif prefix_lm or use_sequence_id: |
|
return (1, 1, seq_len, seq_len) |
|
return None |
|
else: |
|
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') |
|
|
|
def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8): |
|
if attn_impl == 'flash': |
|
return None |
|
elif attn_impl in ['torch', 'triton']: |
|
if alibi: |
|
(device, dtype) = (attn_bias.device, attn_bias.dtype) |
|
attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype)) |
|
return attn_bias |
|
else: |
|
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') |
|
|
|
def gen_slopes(n_heads, alibi_bias_max=8, device=None): |
|
_n_heads = 2 ** math.ceil(math.log2(n_heads)) |
|
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device) |
|
m = m.mul(alibi_bias_max / _n_heads) |
|
slopes = 1.0 / torch.pow(2, m) |
|
if _n_heads != n_heads: |
|
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads] |
|
return slopes.view(1, n_heads, 1, 1) |
|
|
|
def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None): |
|
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len) |
|
if full: |
|
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1) |
|
alibi_bias = alibi_bias.abs().mul(-1) |
|
slopes = gen_slopes(n_heads, alibi_bias_max, device=device) |
|
alibi_bias = alibi_bias * slopes |
|
return alibi_bias.to(dtype=dtype) |
|
ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention} |