--- license: apache-2.0 language: tr tags: - generated_from_trainer - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-Tr-med-CommonVoice8 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice tr type: common_voice args: tr metrics: - name: Test WER type: wer value: 49.14 --- # wav2vec2-xls-r-300m-Tr-med-CommonVoice8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2556 - Wer: 0.4914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.4876 | 6.66 | 5000 | 0.3252 | 0.5784 | | 0.6919 | 13.32 | 10000 | 0.2720 | 0.5172 | | 0.5919 | 19.97 | 15000 | 0.2556 | 0.4914 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3