update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: dbmdz_distilbert-base-turkish-cased_allnli_tr
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# dbmdz_distilbert-base-turkish-cased_allnli_tr
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [dbmdz/distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.6481
|
20 |
+
- Accuracy: 0.7381
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-05
|
40 |
+
- train_batch_size: 32
|
41 |
+
- eval_batch_size: 32
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 3
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
51 |
+
| 0.94 | 0.03 | 1000 | 0.9074 | 0.5813 |
|
52 |
+
| 0.8102 | 0.07 | 2000 | 0.8802 | 0.5949 |
|
53 |
+
| 0.7737 | 0.1 | 3000 | 0.8491 | 0.6155 |
|
54 |
+
| 0.7576 | 0.14 | 4000 | 0.8283 | 0.6261 |
|
55 |
+
| 0.7286 | 0.17 | 5000 | 0.8150 | 0.6362 |
|
56 |
+
| 0.7162 | 0.2 | 6000 | 0.7998 | 0.6400 |
|
57 |
+
| 0.7092 | 0.24 | 7000 | 0.7830 | 0.6565 |
|
58 |
+
| 0.6962 | 0.27 | 8000 | 0.7653 | 0.6629 |
|
59 |
+
| 0.6876 | 0.31 | 9000 | 0.7630 | 0.6687 |
|
60 |
+
| 0.6778 | 0.34 | 10000 | 0.7475 | 0.6739 |
|
61 |
+
| 0.6737 | 0.37 | 11000 | 0.7495 | 0.6781 |
|
62 |
+
| 0.6712 | 0.41 | 12000 | 0.7350 | 0.6826 |
|
63 |
+
| 0.6559 | 0.44 | 13000 | 0.7274 | 0.6897 |
|
64 |
+
| 0.6493 | 0.48 | 14000 | 0.7248 | 0.6902 |
|
65 |
+
| 0.6483 | 0.51 | 15000 | 0.7263 | 0.6858 |
|
66 |
+
| 0.6445 | 0.54 | 16000 | 0.7070 | 0.6978 |
|
67 |
+
| 0.6467 | 0.58 | 17000 | 0.7083 | 0.6981 |
|
68 |
+
| 0.6332 | 0.61 | 18000 | 0.6996 | 0.7004 |
|
69 |
+
| 0.6288 | 0.65 | 19000 | 0.6979 | 0.6978 |
|
70 |
+
| 0.6308 | 0.68 | 20000 | 0.6912 | 0.7040 |
|
71 |
+
| 0.622 | 0.71 | 21000 | 0.6904 | 0.7092 |
|
72 |
+
| 0.615 | 0.75 | 22000 | 0.6872 | 0.7094 |
|
73 |
+
| 0.6186 | 0.78 | 23000 | 0.6877 | 0.7075 |
|
74 |
+
| 0.6183 | 0.82 | 24000 | 0.6818 | 0.7111 |
|
75 |
+
| 0.6115 | 0.85 | 25000 | 0.6856 | 0.7122 |
|
76 |
+
| 0.608 | 0.88 | 26000 | 0.6697 | 0.7179 |
|
77 |
+
| 0.6071 | 0.92 | 27000 | 0.6727 | 0.7181 |
|
78 |
+
| 0.601 | 0.95 | 28000 | 0.6798 | 0.7118 |
|
79 |
+
| 0.6018 | 0.99 | 29000 | 0.6854 | 0.7071 |
|
80 |
+
| 0.5762 | 1.02 | 30000 | 0.6697 | 0.7214 |
|
81 |
+
| 0.5507 | 1.05 | 31000 | 0.6710 | 0.7185 |
|
82 |
+
| 0.5575 | 1.09 | 32000 | 0.6709 | 0.7226 |
|
83 |
+
| 0.5493 | 1.12 | 33000 | 0.6659 | 0.7191 |
|
84 |
+
| 0.5464 | 1.15 | 34000 | 0.6709 | 0.7232 |
|
85 |
+
| 0.5595 | 1.19 | 35000 | 0.6642 | 0.7220 |
|
86 |
+
| 0.5446 | 1.22 | 36000 | 0.6709 | 0.7202 |
|
87 |
+
| 0.5524 | 1.26 | 37000 | 0.6751 | 0.7148 |
|
88 |
+
| 0.5473 | 1.29 | 38000 | 0.6642 | 0.7209 |
|
89 |
+
| 0.5477 | 1.32 | 39000 | 0.6662 | 0.7223 |
|
90 |
+
| 0.5522 | 1.36 | 40000 | 0.6586 | 0.7227 |
|
91 |
+
| 0.5406 | 1.39 | 41000 | 0.6602 | 0.7258 |
|
92 |
+
| 0.54 | 1.43 | 42000 | 0.6564 | 0.7273 |
|
93 |
+
| 0.5458 | 1.46 | 43000 | 0.6780 | 0.7213 |
|
94 |
+
| 0.5448 | 1.49 | 44000 | 0.6561 | 0.7235 |
|
95 |
+
| 0.5418 | 1.53 | 45000 | 0.6600 | 0.7253 |
|
96 |
+
| 0.5408 | 1.56 | 46000 | 0.6616 | 0.7274 |
|
97 |
+
| 0.5451 | 1.6 | 47000 | 0.6557 | 0.7283 |
|
98 |
+
| 0.5385 | 1.63 | 48000 | 0.6583 | 0.7295 |
|
99 |
+
| 0.5261 | 1.66 | 49000 | 0.6468 | 0.7325 |
|
100 |
+
| 0.5364 | 1.7 | 50000 | 0.6447 | 0.7329 |
|
101 |
+
| 0.5294 | 1.73 | 51000 | 0.6429 | 0.7320 |
|
102 |
+
| 0.5332 | 1.77 | 52000 | 0.6508 | 0.7272 |
|
103 |
+
| 0.5274 | 1.8 | 53000 | 0.6492 | 0.7326 |
|
104 |
+
| 0.5286 | 1.83 | 54000 | 0.6470 | 0.7318 |
|
105 |
+
| 0.5359 | 1.87 | 55000 | 0.6393 | 0.7354 |
|
106 |
+
| 0.5366 | 1.9 | 56000 | 0.6445 | 0.7367 |
|
107 |
+
| 0.5296 | 1.94 | 57000 | 0.6413 | 0.7313 |
|
108 |
+
| 0.5346 | 1.97 | 58000 | 0.6393 | 0.7315 |
|
109 |
+
| 0.5264 | 2.0 | 59000 | 0.6448 | 0.7357 |
|
110 |
+
| 0.4857 | 2.04 | 60000 | 0.6640 | 0.7335 |
|
111 |
+
| 0.4888 | 2.07 | 61000 | 0.6612 | 0.7318 |
|
112 |
+
| 0.4964 | 2.11 | 62000 | 0.6516 | 0.7337 |
|
113 |
+
| 0.493 | 2.14 | 63000 | 0.6503 | 0.7356 |
|
114 |
+
| 0.4961 | 2.17 | 64000 | 0.6519 | 0.7348 |
|
115 |
+
| 0.4847 | 2.21 | 65000 | 0.6517 | 0.7327 |
|
116 |
+
| 0.483 | 2.24 | 66000 | 0.6555 | 0.7310 |
|
117 |
+
| 0.4857 | 2.28 | 67000 | 0.6525 | 0.7312 |
|
118 |
+
| 0.484 | 2.31 | 68000 | 0.6444 | 0.7342 |
|
119 |
+
| 0.4792 | 2.34 | 69000 | 0.6508 | 0.7330 |
|
120 |
+
| 0.488 | 2.38 | 70000 | 0.6513 | 0.7344 |
|
121 |
+
| 0.472 | 2.41 | 71000 | 0.6547 | 0.7346 |
|
122 |
+
| 0.4872 | 2.45 | 72000 | 0.6500 | 0.7342 |
|
123 |
+
| 0.4782 | 2.48 | 73000 | 0.6585 | 0.7358 |
|
124 |
+
| 0.481 | 2.51 | 74000 | 0.6477 | 0.7356 |
|
125 |
+
| 0.4822 | 2.55 | 75000 | 0.6587 | 0.7346 |
|
126 |
+
| 0.4728 | 2.58 | 76000 | 0.6572 | 0.7340 |
|
127 |
+
| 0.4841 | 2.62 | 77000 | 0.6443 | 0.7374 |
|
128 |
+
| 0.4885 | 2.65 | 78000 | 0.6494 | 0.7362 |
|
129 |
+
| 0.4752 | 2.68 | 79000 | 0.6509 | 0.7382 |
|
130 |
+
| 0.4883 | 2.72 | 80000 | 0.6457 | 0.7371 |
|
131 |
+
| 0.4888 | 2.75 | 81000 | 0.6497 | 0.7364 |
|
132 |
+
| 0.4844 | 2.79 | 82000 | 0.6481 | 0.7376 |
|
133 |
+
| 0.4833 | 2.82 | 83000 | 0.6451 | 0.7389 |
|
134 |
+
| 0.48 | 2.85 | 84000 | 0.6423 | 0.7373 |
|
135 |
+
| 0.4832 | 2.89 | 85000 | 0.6477 | 0.7357 |
|
136 |
+
| 0.4805 | 2.92 | 86000 | 0.6464 | 0.7379 |
|
137 |
+
| 0.4775 | 2.96 | 87000 | 0.6477 | 0.7380 |
|
138 |
+
| 0.4843 | 2.99 | 88000 | 0.6481 | 0.7381 |
|
139 |
+
|
140 |
+
|
141 |
+
### Framework versions
|
142 |
+
|
143 |
+
- Transformers 4.12.3
|
144 |
+
- Pytorch 1.10.0+cu102
|
145 |
+
- Datasets 1.15.1
|
146 |
+
- Tokenizers 0.10.3
|