File size: 2,748 Bytes
22e9e81
 
 
0bf315b
 
22e9e81
 
 
 
 
 
 
 
 
 
0bf315b
22e9e81
0bf315b
 
22e9e81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
tags:
- generated_from_trainer
datasets:
- enoriega/odinsynth_dataset
model-index:
- name: rule_learning_margin_3mm_many_negatives_spanpred_attention
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# rule_learning_margin_3mm_many_negatives_spanpred_attention

This model is a fine-tuned version of [enoriega/rule_softmatching](https://huggingface.co/enoriega/rule_softmatching) on the enoriega/odinsynth_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2196
- Margin Accuracy: 0.8969

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2000
- total_train_batch_size: 8000
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Margin Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|
| 0.3149        | 0.16  | 60   | 0.3098          | 0.8608          |
| 0.2754        | 0.32  | 120  | 0.2725          | 0.8733          |
| 0.2619        | 0.48  | 180  | 0.2512          | 0.8872          |
| 0.2378        | 0.64  | 240  | 0.2391          | 0.8925          |
| 0.2451        | 0.8   | 300  | 0.2305          | 0.8943          |
| 0.2357        | 0.96  | 360  | 0.2292          | 0.8949          |
| 0.2335        | 1.12  | 420  | 0.2269          | 0.8952          |
| 0.2403        | 1.28  | 480  | 0.2213          | 0.8957          |
| 0.2302        | 1.44  | 540  | 0.2227          | 0.8963          |
| 0.2353        | 1.6   | 600  | 0.2222          | 0.8961          |
| 0.2271        | 1.76  | 660  | 0.2207          | 0.8964          |
| 0.228         | 1.92  | 720  | 0.2218          | 0.8967          |
| 0.2231        | 2.08  | 780  | 0.2201          | 0.8967          |
| 0.2128        | 2.24  | 840  | 0.2219          | 0.8967          |
| 0.2186        | 2.4   | 900  | 0.2202          | 0.8967          |
| 0.2245        | 2.56  | 960  | 0.2205          | 0.8969          |
| 0.2158        | 2.72  | 1020 | 0.2196          | 0.8969          |
| 0.2106        | 2.88  | 1080 | 0.2192          | 0.8968          |


### Framework versions

- Transformers 4.19.2
- Pytorch 1.11.0
- Datasets 2.2.1
- Tokenizers 0.12.1