ppo-LunarLander-v2 / config.json
enricocipolla's picture
Upload Model
847178b verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f45d263f7f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45d263f880>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45d263f910>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45d263f9a0>", "_build": "<function ActorCriticPolicy._build at 0x7f45d263fa30>", "forward": "<function ActorCriticPolicy.forward at 0x7f45d263fac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f45d263fb50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45d263fbe0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f45d263fc70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45d263fd00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45d263fd90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45d263fe20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f45d27d7140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1720630629067934194, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3LjD2SY6I/WlJJPv+HIL+QQHI9GwJNPQAAAAAAAAAAcMdUvtkmlT/ap+6+keogv5WuhL6SI2y9AAAAAAAAAABTZFG+trF8vMuOQLvQdV+5prDVPTqGaToAAIA/AACAPw27ur17ppy6EIkSNUahGjBpXqo6cINbtAAAgD8AAIA/oHw3vqBVAj9T8OE8LFIMv3ChB751klw9AAAAAAAAAACNq6i9+/e+P9PSIb+SuBw+n765vCBifb4AAAAAAAAAAOZcST4c9VO8J3ItOMvGprYlJLe95Kg1twAAgD8AAIA/zbiJPClgFLrIpIU5di/qNCO9iDvhUZ24AACAPwAAgD+AXzY9T4wSPwiD77vc/im/JaHMuw95Rz0AAAAAAAAAAJqVgzvXvwG7JiUwvFqFgjw7fNk7jSBmvQAAgD8AAIA/4OQJPl1mYz4aPwq/hC14vrk/Yz2GAq2+AAAAAAAAAAANDyC+TXhGPrZCjD0/VbC+kmcZvXQLLz0AAAAAAAAAAK0gcz6NxiE+mHN9vl5UbL5lE9M7QJ6svQAAAAAAAAAAAMBwunMrvD/bIRw8onxJvvvlibvtTGa9AAAAAAAAAABghzI+dBi2vJp7DLueLYI5FZ0ivqt9QzoAAIA/AACAP+2aMr40soO8LB21uzPmNbpRX+M9dJEGOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIdU3sHB1uMAWyUS7uMAXSUR0CVBfVzIV/MdX2UKGgGR0BwU1/tpmEoaAdLt2gIR0CVBivL5h0AdX2UKGgGR0BxHy7/XGwSaAdLumgIR0CVBpsdDIBBdX2UKGgGR0BkGrjJdSl4aAdN6ANoCEdAlQg6qjrRjXV9lChoBkdAcOyjjrAxjGgHS7RoCEdAlQhklu3tr3V9lChoBkdAcht3cYZVGWgHS9JoCEdAlQiSHRCx/3V9lChoBkdAcR7oNutOmGgHS8RoCEdAlQifznRsuXV9lChoBkdAcRppGWldkmgHS6toCEdAlQoyRwIdEXV9lChoBkdAcQ56qbSZ0GgHS8poCEdAlQpTOcDr7nV9lChoBkdAcRzC4SYgJWgHS6RoCEdAlQshew9q13V9lChoBkdAciVIfKZDzGgHS9hoCEdAlQuQLE1l5HV9lChoBkdAcUmGnGbTdGgHS7ZoCEdAlQ0TwUg0THV9lChoBkdAcT5kBS1ma2gHS9ZoCEdAlQ0+PJaJRHV9lChoBkdAcYtd7OVxCWgHS9BoCEdAlQ2ESVW0Z3V9lChoBkdAcZ6aH9FWn2gHS9loCEdAlQ2dUKiPAHV9lChoBkdAcrfTJhfBvmgHS+ZoCEdAlQ+rJOnEVHV9lChoBkdAchEFhG6PKmgHS+doCEdAlQ/SwB5ooXV9lChoBkdAcxRnF5v9+GgHS+5oCEdAlRAu/QBxP3V9lChoBkdAYXQXfqHGj2gHTegDaAhHQJURo96kZaV1fZQoaAZHQHHKvnr6ciJoB0ujaAhHQJUR6kM1CPZ1fZQoaAZHQHA10JBw++xoB0vRaAhHQJUR6IO6NER1fZQoaAZHQHJWK2fChvloB0vzaAhHQJUR6ASWZ7Z1fZQoaAZHQGbJbSqlxfhoB03oA2gIR0CVEgQizLOidX2UKGgGR0BzSKA5Jbt7aAdL52gIR0CVEjIMBp6AdX2UKGgGR0Bxd879ycTbaAdLr2gIR0CVErLM9r44dX2UKGgGR0Bxeyv6j323aAdNKAFoCEdAlRM1Gsmv4nV9lChoBkdAcYgVurIYFmgHS7ZoCEdAlRUE8q4H5nV9lChoBkdAYysJtzjm0WgHTegDaAhHQJUVXXJ5miB1fZQoaAZHQHEZoMWoFV1oB00/AWgIR0CVFnK+zt1IdX2UKGgGR0BxWGD8LrooaAdL32gIR0CVFprDZUT+dX2UKGgGR0BuHdsi0OVgaAdLtGgIR0CVFuv114gSdX2UKGgGR0Bwqg3tKIznaAdLyWgIR0CVFzghKUV0dX2UKGgGR0Bw9V2HLzPKaAdLwGgIR0CVFzPacqe9dX2UKGgGR0Bz5IIfKZDzaAdLzGgIR0CVF5OYIBzWdX2UKGgGR0BxkN1W8yvcaAdLumgIR0CVF8IrOJLvdX2UKGgGR0BxzCg3974SaAdLyWgIR0CVGJTCLuQZdX2UKGgGR0By6He40/GEaAdL8WgIR0CVGJ3LV4HHdX2UKGgGR0BwbNRYRujzaAdLv2gIR0CVGnDneSB9dX2UKGgGR0BwEwRbr1M/aAdL0GgIR0CVGpS5y2hJdX2UKGgGR0Bxru8Hv+fiaAdLv2gIR0CVG11BMSK4dX2UKGgGR0Bv14KOT7l8aAdLqGgIR0CVG/VU+9rXdX2UKGgGR0Bxc3A57w8XaAdLx2gIR0CVHA5eJHiFdX2UKGgGR0BxLGkO7QLNaAdLwGgIR0CVHDGax5cDdX2UKGgGR0BwhxnDiwSraAdLzmgIR0CVHIm8dxQ0dX2UKGgGR0BvjzhR64UfaAdLvWgIR0CVHLZRsMy8dX2UKGgGR0BxKJ2OhkAhaAdL72gIR0CVHMPK+zt1dX2UKGgGR0Bw+dj7Q9idaAdLr2gIR0CVHTvOQhfTdX2UKGgGR0Bx/0BZIQOGaAdL0WgIR0CVHhSRr8BNdX2UKGgGR0BwsFDCxeLOaAdLwGgIR0CVH2dBBzFNdX2UKGgGR0ByVVld1MdtaAdL62gIR0CVIMpYcNpedX2UKGgGR0Bhl19QXQ+maAdN6ANoCEdAlSEDWf9P13V9lChoBkdAcQI7+DOC5GgHS85oCEdAlSGJeAuqWHV9lChoBkdAcnp7N0NjLGgHS+xoCEdAlSGlwgkkbHV9lChoBkdAc0gyD7Ikq2gHS9FoCEdAlSJktVaOgnV9lChoBkdAcBAQ9RrJsGgHS+poCEdAlSKI3R5TqHV9lChoBkdAcdO67NB4U2gHS+FoCEdAlSLjzyz5XXV9lChoBkdAckR6HCXQdGgHS/1oCEdAlSNfyf+S83V9lChoBkdAcznM9bHIZWgHS+JoCEdAlSNuc6Nly3V9lChoBkdAbtGZQ53kgmgHS8doCEdAlSOTJIUah3V9lChoBkdAZK7sCT2WZGgHTegDaAhHQJUkytKZlWh1fZQoaAZHQHFGHIlt0mtoB0vHaAhHQJUkzJIUahp1fZQoaAZHQHHbIiosI3RoB0vPaAhHQJUmg93bEgp1fZQoaAZHQHI22L5ylvZoB0vbaAhHQJUncZ9/jKh1fZQoaAZHQHOf0+C9RJpoB0vqaAhHQJUoBDOTq0N1fZQoaAZHQHKYHnMdLg5oB0viaAhHQJUoiNhmXgN1fZQoaAZHQHH5nhS9/SZoB0vCaAhHQJUovBYV6/t1fZQoaAZHQGSDdWhh6SloB03oA2gIR0CVKOCHARChdX2UKGgGR0Bz8dVZLZi/aAdL4GgIR0CVKP8r7O3VdX2UKGgGR0ByAomsvIwNaAdL22gIR0CVKVVbA1vVdX2UKGgGR0BwbWnO0LMLaAdLxWgIR0CVKk0j1PFedX2UKGgGR0BzPEpvxYq5aAdL+2gIR0CVKmXGOuJUdX2UKGgGR0BnOEAo5PuYaAdN6ANoCEdAlSrePzWf9XV9lChoBkdAbgNtl7MPjGgHS7toCEdAlSyFaW5Yo3V9lChoBkdAZRSTXarWAmgHTegDaAhHQJUsxAKOT7l1fZQoaAZHQHA0ipBHCoFoB0u/aAhHQJUtKLS/j811fZQoaAZHQHFnm8h9srNoB0v2aAhHQJUtRo371qZ1fZQoaAZHQHKY1kH2RJVoB0vMaAhHQJUuJ5TqB3B1fZQoaAZHQHBo8SK3uu1oB0vCaAhHQJUujO7g88t1fZQoaAZHQHFMabvw3HdoB0uuaAhHQJUvIrOJLuh1fZQoaAZHQHLS/U8V58loB0v1aAhHQJUvLL1VYIV1fZQoaAZHQHJprHdXT3JoB0vraAhHQJUvVZid8Rd1fZQoaAZHQHGd0bgjyFxoB00HAWgIR0CVL+5dGAkLdX2UKGgGR0Byi4FfReC1aAdL62gIR0CVMJkE9t/GdX2UKGgGR0B0JHeEZiuuaAdLzWgIR0CVMnKPn0TUdX2UKGgGR0By2tnQID5kaAdL22gIR0CVMpvkRzzVdX2UKGgGR0Bx+5VLi++NaAdLqmgIR0CVMup7TlT4dX2UKGgGR0Bx5xqpLmITaAdL0mgIR0CVMwTSsr/bdX2UKGgGR0BwtKmhufmLaAdL1WgIR0CVMzk2xY7rdX2UKGgGR0BwrogJTl1baAdL3mgIR0CVNQ6Uqx1QdX2UKGgGR0BxUHVRUFSsaAdL2GgIR0CVNfQkX1rZdX2UKGgGR0BwNd7kXDWLaAdLxGgIR0CVN0ddE9dNdX2UKGgGR0BynxeZ5Rj0aAdNEQFoCEdAlTgvCEYfn3V9lChoBkdAY2hUiILw4WgHTegDaAhHQJU47KlpGnZ1fZQoaAZHQHHVaRdQfp5oB0uvaAhHQJU5wGQjlgd1fZQoaAZHQHASCb6P8yhoB0vGaAhHQJU6QZ0jkdV1fZQoaAZHQHDOHCXQdCFoB0vQaAhHQJU6dlAeJYV1fZQoaAZHQHFg+z2OAAhoB0vaaAhHQJU79YU34sV1fZQoaAZHQHL5wdwNsnBoB03rAmgIR0CVPDSRKYiQdX2UKGgGR0BtZ1Hz6JqJaAdLs2gIR0CVPI9srNGFdX2UKGgGR0BzdLadtl7MaAdL/WgIR0CVPQPepGWldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}