eolang commited on
Commit
4ac0757
1 Parent(s): f755adc

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -0
README.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - sw
4
+ license: apache-2.0
5
+ datasets:
6
+ - wikiann
7
+ pipeline_tag: token-classification
8
+ examples: null
9
+ widget:
10
+ - text: Uhuru Kenyatta ni rais wa Kenya.
11
+ example_title: Sentence_1
12
+ - text: Tumefanya mabadiliko muhimu za sera zetu za faragha na vidakuzi
13
+ example_title: Sentence_2
14
+ metrics:
15
+ - accuracy
16
+ - f1
17
+ - precision
18
+ - recall
19
+ library_name: transformers
20
+ ---
21
+
22
+
23
+ ## Intended uses & limitations
24
+
25
+ #### How to use
26
+
27
+ You can use this model with Transformers *pipeline* for NER.
28
+
29
+ ```python
30
+ from transformers import pipeline
31
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
32
+
33
+ tokenizer = AutoTokenizer.from_pretrained("eolang/Swahili-NER-BertBase-Cased")
34
+ model = AutoModelForTokenClassification.from_pretrained("eolang/Swahili-NER-BertBase-Cased")
35
+
36
+ nlp = pipeline("ner", model=model, tokenizer=tokenizer)
37
+ example = "Kwa nini Kenya inageukia mazao ya GMO kukabiliana na ukame"
38
+
39
+ ner_results = nlp(example)
40
+ print(ner_results)
41
+ ```
42
+
43
+ ## Training data
44
+
45
+ This model was fine-tuned on the Swahili Version of the WikiAnn dataset for cross-lingual name tagging and linking based on Wikipedia articles in 295 languages
46
+
47
+
48
+ ## Training procedure
49
+
50
+ This model was trained on a single NVIDIA A 5000 GPU with recommended hyperparameters from the [original BERT paper](https://arxiv.org/pdf/1810.04805) which trained & evaluated the model on CoNLL-2003 NER task.