--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_essay results: [] --- # bert_essay This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3554 - Mse: 0.3554 - Mae: 0.4632 - R2: 0.6556 - Accuracy: 0.2821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:--------:| | No log | 1.0 | 433 | 0.3749 | 0.3749 | 0.4772 | 0.6367 | 0.2992 | | 0.6371 | 2.0 | 866 | 0.3572 | 0.3572 | 0.4653 | 0.6539 | 0.2848 | | 0.3565 | 3.0 | 1299 | 0.3554 | 0.3554 | 0.4632 | 0.6556 | 0.2821 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2