--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_essay results: [] --- # bert_essay This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3763 - Mse: 0.3763 - Mae: 0.4747 - R2: 0.6434 - Accuracy: 0.2684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:--------:| | 0.6577 | 1.0 | 866 | 0.5250 | 0.5250 | 0.5685 | 0.5025 | 0.2674 | | 0.3355 | 2.0 | 1732 | 0.4174 | 0.4174 | 0.5027 | 0.6045 | 0.2615 | | 0.2592 | 3.0 | 2598 | 0.3763 | 0.3763 | 0.4747 | 0.6434 | 0.2684 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2