epsil commited on
Commit
3a834c6
1 Parent(s): 132dfd4

Upload DQN LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
LunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e398cae1b1be8ad3b1f4c0cbcb469306499897424513ab3d79a6927b36109c8
3
+ size 110059
LunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
LunarLander/data ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function DQNPolicy.__init__ at 0x7f798cc2bdd0>",
8
+ "_build": "<function DQNPolicy._build at 0x7f798cc2be60>",
9
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7f798cc2bef0>",
10
+ "forward": "<function DQNPolicy.forward at 0x7f798cc2bf80>",
11
+ "_predict": "<function DQNPolicy._predict at 0x7f798cbae050>",
12
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f798cbae0e0>",
13
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f798cbae170>",
14
+ "__abstractmethods__": "frozenset()",
15
+ "_abc_impl": "<_abc_data object at 0x7f798cc2a240>"
16
+ },
17
+ "verbose": 0,
18
+ "policy_kwargs": {},
19
+ "observation_space": {
20
+ ":type:": "<class 'gym.spaces.box.Box'>",
21
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
22
+ "dtype": "float32",
23
+ "_shape": [
24
+ 8
25
+ ],
26
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
27
+ "high": "[inf inf inf inf inf inf inf inf]",
28
+ "bounded_below": "[False False False False False False False False]",
29
+ "bounded_above": "[False False False False False False False False]",
30
+ "_np_random": null
31
+ },
32
+ "action_space": {
33
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
34
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAO16GiL6t6UonUuUd0hnjmYLUCg6SdA3zCEX7tkto2Skc4wrNlSP8x6m04i9Jh1Kkws2gASNvoF9fIlBXc4LUTWyiFsjAPDmlUpGdIe2tp4joAyX/961ASUjtIxucDs50Cu/bXp2RbVVwcFNFPHOyY3lnHYhzvBp7iF9q4WRaoo7TCLxcd3YV86CC8//blHCDXmh7rmO9J26sBGbjbVvddP6yJM0WD+Fq8LU+Pw3MLtegb8IOfXr0PFW3aEKWX2ZOQBqrr8ghAtZzziGSfjv5WVwA4Z9NHmf5qwiszuCCB6cyRkpYbJY1o1thWqlQvkCP4JbCLuQnEbqz9NG7NFirjpVoLeUOHWVnXhAP63rnS+dQNYdFNAcMp1zQThhp0NNDo1Bnja0QK9OA6qgKs9qCT3jIlD5jdwPrJbhwM5eKG5FGnTFwOwNGvJw/aYDcuiisBppWlAD7oQfyjSqE06/g7RCOOn+sul8ZGhP8SQ4GYRJydnwZz8SaGp51btqjdZ4iNsLmqb7cDWfwJ2g9awTG62kLkdVNiU9AVh8tH3TZHmzUwjLSgCoF+cy8mnk5QtrNuV16fNs2gq9fGnGMFIphEdDOeb1M5bRRXEttpy1KtJ9w8WAdJS0OEfrgsr9RkeljwAxHf6tfzciip5B2WnHj64DNK3x0GetSCacBXC6H1A53dMWBJ7T+qqvvsC1MFGGCfmj7iPOl9XIpBRIXOrEVI/aMcCQwkpBP6Cot+lx6KFENhdSwqJopFLEefYgweJxhBchFHZJigFhd1LXtvUx8clNTU8esM3MzSZNQEmgyGOsLCbmIu/u8d86IScn0TM+P41KqGtxQoEzlOdXyLNxyH3Er3s8zDbnvnmqPxkjuUZ3M3c+J2sW5VpFpxatQG5DqjK+QHPhV9uGyCdKz3/BTFEXl5R5e7Vg69I+E0amIuO0d8RKYuesHL2ch//o907m3I8xxsVIOgl7E8I5Eo5JBWNZibj5epRFMvQAJm19n++38dqT6j6yt5NbGomfdacKcFBWGMLmf4Q4d0lkKcitCOQb7+4rtCxWv569wz/gB3FMDso27nIcmVCqAmwDk/C7qSKcZnqKYnNCwNQLXTXqq/CeuEf2dWkJkq84BqYRiW2J0puwE/JKLERddLfDFTkTjFchOH0ue6YZkVuG5UPo/6fpRDgzbrM2ztt3el97FbrAwt21UYWstbH4IHBbzJH0nTsUGV+Gi6fDytgCnasFy/i2JrvMNK1jeKLxr+rXH4t07oeWREuGQ6/j7yU2bke0cRKy2oy3Rreptk63iloAOsl6mQ8AjzXexrJzICE+2vUEo+lgLn0SoUTEKOWhejPNtfUVAj43NqMiFW36+WwBsydUiv0DFD2GVVr1uekNlz/bdLFTHWYlJrsNgwRorbmJGPJV2FO2rQUZm8OoE7eiv3se60vs19pLFpgekXB2G3psj9HnkpragbCs64VHlYHyLZk63Vg08EQqsEQfZudfCq5m15mnOfuq5rMMxIBgQP/446PX5BE6Gm9VOTkwLHkNNnnaVyv6JVN9IxjsuJl1Jj4fK1Avc5LZYzjHQjfp38ITfdmuvs5Lyfec9Vtn+cjCbc/YPnRq2SncHpiYT8KtXRmfQw3bbe5ShsPalb7Z10nLOcFFD4KyvAcZSPGaud+NdJFKZEPFUZqe3TB3Lb72oCd74Mtmak2L6ZssCB5xaRfkH+jcZpWsmFHbAuiOU4o4LV5DUXF/CLr+5W+gOMIaj5u95pkYtok8oe0vBR/JJyWO3O9M3p+uPCp4OW2e8X539rehHty0/SqKxzz/ZJI/zA8BzBN6RQ8J2ELYaol95Qki8eU3mvvgHtOIwaJIb0InNgHC+OxioddnVxnQhRb5b5pzeVZVM4LfT4jcS5UK5eezH/b7uoDg24+9ibEL8yWrKFcnk0Lu+MQW2JQ9eZvkGSRn7mkAhOX1yKgxXUFPpE1xLc+G8+PhOseksv/P7GN6gKVnLh62XKvBX+olWrBwAOAhkO/Xb7AdWXKD593eZ3y5CrIXjq/DsQD/kXIqenLl54gmy5xbOIWX5DwnQeA/Ga/B+kXTfN+T+0hYwKPlcBA17cFz5SKJMfowwLoQRB/YCcX7ZdvicViwmkk7vmgF0VKMmGbXvpociQGGmKLCNJRZkAKkrxTBT//PLJd5Mi6BtOhxIjwZkTD1VBMyf3LhCkW5j9jglXX6//ieLYwqhFEkG//E8NReAPJ7Hp1f3BPmn+hrDuCOmE8HC7zqDZl8A2y1/cd3s4XarhIeM4TnTu9QsuRK4QeuAtMQfD3fsRDxQp6QcKoIs7WEXqlOG4d3R29R7NNnwOuaQ2FY98q3LBIP1H1/7trlJouuDrmhnmlP9KhHZYot2/+xgmHlVIy0ecHzL1k5nt2ygLVONZRex1BGtZZU2Ij9H0Gd+KDc0mDPtA5VFLoZqBhJiBMyMNLW5w9woLS0AS4nFbZqx+G7wv6+95DULWCljzTR5doy8UWLoLnMAq7XTubw31ka8v+szkTh4UqpzxBLoOB0tyshM+Yuk5TtEzg4pPNVWEJOH1A/7NS8FWWbXtHRrTM56giqOUvmSMnFsnlByK/BqEk93Z4qM4kA/74FNzRInL2mo2X4U1eGUTdCQ4BoV0g71lMNKsdXSGydkAZ9ek1kcK26qF8j3SiuSyNAx2FeQ/hcW0hul/qG5Pncf2+1JFS/Z7SsMfoI0HWWWC4iTYKt+cKlU5kJ37lZ34fNPoWH4AtPP99sUEOJzL0SLSnMawCQZSuL4Imv/5IXrspOejYHD1LUuCgFMW4UbntwlRerk9Qfw4OmRUAtu2f4TVavNhF+gPhb5UPhUkFyZ2Yil8r/pe1cyCUktLYUFfsfMpCs3BjSfsOq8cfNwhdp0zv2a6TmCKgQwXXL4jcp4NfpFNUXGkc4CdbOdnFLJGpRtuCCsCG/GFF+F8LHsHE56QZ62y/Ia1mY7JwjMYEt5UJlyqhfLg8ij/4mlTdolWCuHnZZ/lK+59L8mWyF697bWYyjYSZ+kCAu6WtGcVOitEL8AifnY6Frs0REAtIaXedj6/fw4w7tTWynG28ji59i1WsZhT+FHVqxBXzyidi4j48ViD/PBAIljnIxhghs9/GzLbF8DhhmjaasgEyHFtqFFCqbbCGhG7sjESpmJ0xLJuGSTtY9jTcb6t5eQltiROYnvbiX2OTfrFqGLoaQJQyfUt2f2QrfeeI2/KDgfKpyroytNChkm7+DQA/Ojhiipzdfz01yyiou/RaZcaBy8I0c0iDqj3ZKfRalv+Cbe2FCNqe5VP4h7r4dCfAnU3jk/s+MQkTMuo9iz4ZKrlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNIAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
35
+ "n": 4,
36
+ "_shape": [],
37
+ "dtype": "int64",
38
+ "_np_random": "RandomState(MT19937)"
39
+ },
40
+ "n_envs": 32,
41
+ "num_timesteps": 1000064,
42
+ "_total_timesteps": 1000000,
43
+ "_num_timesteps_at_start": 0,
44
+ "seed": null,
45
+ "action_noise": null,
46
+ "start_time": 1651677011.6722314,
47
+ "learning_rate": 0.0001,
48
+ "tensorboard_log": null,
49
+ "lr_schedule": {
50
+ ":type:": "<class 'function'>",
51
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
52
+ },
53
+ "_last_obs": {
54
+ ":type:": "<class 'numpy.ndarray'>",
55
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAPpQLr803K4/6ItwvfukFLoi4dI8A1wKvQAAAAAAAAAAEzkZvhOAQz96WaS7pbVHvEz8IT0WxAu9AAAAAAAAAABCC1e/atGiPwqwZ73PFHE7f9TFPCHoAr0AAAAAAAAAAMU6o76aemI/QJpnvVPfn7v4dAC7ixsjvQAAAAAAAAAALd8DPtaKrT81nqU+tdBPvHY4PT6FXX8+AAAAAAAAAACC5Ie+Wt2JPyqLxLzlYRW92gxpvOzNRT0AAAAAAAAAANpSnL5VdIg/i0UIOw7fn7zhSUA9kEW8uwAAAAAAAAAAmO+fvjlreT9a4yI9CqzhvNHsTzyR0QY+AAAAAAAAAACqSqS+OBmSP3LPK71Ghnw7OdajO6WgUr0AAAAAAAAAAIj/Er87Uag/2w0hvW+VxzwhoTo9tktBvAAAAAAAAAAAmqLWvDTRsj8YnTq+ex0AvdDacr03Zxu9AAAAAAAAAACwgKm+vo+PPztJpryHIUC8QhgrPbL0Ej0AAAAAAAAAAAq/2b762YY/fqefvZk0/jtc7pi8VYL4PAAAAAAAAAAAJsYOPni/sD8+2Qo/EAgNvQwwEj4zCXw+AAAAAAAAAAAAx9C+q8GFP0Yfnzw5TYu8CeiTPS11Ib0AAAAAAAAAADMTYjo3RFg/l0w2vJZDPr2uzxk9CkQ+vAAAAAAAAAAABoIkv+HomT+VtVO9jM0aOy0D3jy23nC8AAAAAAAAAABbIO6+ameaP40nH72rCrW8ucwmPTADkLwAAAAAAAAAAADMHTxFmHY/eqFIvf+vOLz+OUq9qV6GPQAAAAAAAAAARo8TPnUZ8T5jymQ9jJc2vMKpCz19aN88AAAAAAAAAABw1Sq/VbegP/DT5r13vlc9B4bMvM7eeLwAAAAAAAAAAH5MUr8/6qM/OEFFvc3lRLzjGTY8mO+NPQAAAAAAAAAA4DMLvy/hmz+mHhe9T6ECPTzoGz0ua3Y7AAAAAAAAAADdQpK+QMlmP309U7389YU7NQhzPLVLK7wAAAAAAAAAAGHgK7/3UIU/oOvgvrwu4Tx6K/K+6RqsvAAAAAAAAAAAc9cUv1RQgj8yTNS8og88O800KbzDw+Y8AAAAAAAAAAAD7r2+BlmJP1ckBb3ErIo8Z/sYvPKOKj0AAAAAAAAAAFZBAL8HJa0/GuGPvYZOvrwR8BG8yl31PAAAAAAAAAAAzc9kPcjgqz+SHhK+6vcPvZ/sqT2eEjm+AAAAAAAAAAA2vFa+oXWMPzpOn72nD6W8SuuOPKYemL0AAAAAAAAAANNMAr4Uqak/mqRNvrwIg7pSRfK9hr5ovQAAAAAAAAAAfRLBvtQLoj/63Fa9kT/VvEc7IDtYGgY9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
56
+ },
57
+ "_last_episode_starts": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
60
+ },
61
+ "_last_original_obs": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAF4pLr+l3K4/9NmQvUzG0jwlt+A86hFrPAAAAAAAAAAAZicZvhySQz+aWaS7ejNtPEz5KD0ZxAu9AAAAAAAAAAAg5Va/uM6iP0DJhr26APg8tuvSPGqspjsAAAAAAAAAAAPuor7LgWI/qHJSveCRFrxb3gE4hpQOvQAAAAAAAAAAmm4APheTrT/JnaU+TE1lPMlzMD44Xn8+AAAAAAAAAABDyIe+QviJP5oaKr1l3RC9Nk6IvOa0Aj0AAAAAAAAAADJVnL66gog/tlTau7y55zsed0E90K/vPAAAAAAAAAAAdSygvsqTeT9W4yI9TgpmuucjyDut0QY+AAAAAAAAAABDEKS+ZBaSP8MZUr3/s/w8fxb4O6phZbwAAAAAAAAAAF/lEr9IP6g/X6clveHEuzquCz09+eSEvAAAAAAAAAAAZozHvDbosj8iPzG+cZWUu6cVa706i5i9AAAAAAAAAAB2aKm+W5iPPyUc6ry5nbe8OL8jPeNC0jwAAAAAAAAAAN5a2b5F1IY/a56OvbuAlbxHW6W8/ZUjPQAAAAAAAAAABhgJPgbYsD9Znw8/qUNfvUeWBT7ZtII+AAAAAAAAAADa3dC+R86FPzntGz3li1S8XfGXPdsfw7wAAAAAAAAAAGZmgDq6iFg/elGBuhZUnbyHMBw9+HpWvQAAAAAAAAAAql8kvyXnmT/4Qne9NkXrPL8I5DyzyKQ8AAAAAAAAAABC7O2+uneaP+Cn+7yuIas7Z2YqPZ44Tr0AAAAAAAAAADNHJTwPqXY/LQ2OvYTVHb3bqVe98tZMPQAAAAAAAAAAQPkSPjw68T4CB4I9QUWNvPATBj3bmAc9AAAAAAAAAAASiyq/fJCgPzgX+L3lOWQ8Qk3GvE5zrLwAAAAAAAAAADsvUr8Y86M/f3sjvQLXajxBp/o7164UPQAAAAAAAAAA0hsLv6vJmz9wVfe8X3aNOxojGz3Yie47AAAAAAAAAACT/pG+O8NmPy7eS73G20u8zph7PGG2HrwAAAAAAAAAANy/Kr92PIU/A9rzvvKAXTzLofG+0J7VvAAAAAAAAAAAZscUvzlOgj8yTNS8W/bxPF5IQLy9w+Y8AAAAAAAAAAArxr2+jkyJP4lIEL2tW0m8/Bc7vGKCIz0AAAAAAAAAAEsUAL8pNq0/GuGPvWAvYTtteSq82F31PAAAAAAAAAAAswdrPRb7qz/tbfm9XJ4uvXtuvD06ESm+AAAAAAAAAABw5lW+hISMPz9On71Jm9U7zVetPLAemL0AAAAAAAAAAOA2AL6mqak/1S1lvjvmgLzBc+y9fIaTvQAAAAAAAAAA5s/AvgQfoj/63Fa9l54mOjDMUzpUGgY9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
64
+ },
65
+ "_episode_num": 2319,
66
+ "use_sde": false,
67
+ "sde_sample_freq": -1,
68
+ "_current_progress_remaining": -6.4000000000064e-05,
69
+ "ep_info_buffer": {
70
+ ":type:": "<class 'collections.deque'>",
71
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlbcjnJaDYsCUhpRSlIwBbJRN6AOMAXSUR0CWNJxfv4M4dX2UKGgGaAloD0MIuMoTCDvcWsCUhpRSlGgVTegDaBZHQJY2rHeaa1F1fZQoaAZoCWgPQwjXEvJBz3VzwJSGlFKUaBVL9GgWR0CWO9Hy3CsPdX2UKGgGaAloD0MIjbW/sz3RXcCUhpRSlGgVTegDaBZHQJY+B1Ng0CR1fZQoaAZoCWgPQwgP7WMFvzBXwJSGlFKUaBVN6ANoFkdAlkQ2Ts6aLHV9lChoBmgJaA9DCPmdJjPetl7AlIaUUpRoFU3oA2gWR0CWRW7EHdGidX2UKGgGaAloD0MIAizy64eDYcCUhpRSlGgVTdEDaBZHQJZPlAE+xGF1fZQoaAZoCWgPQwhkOnR63jRRwJSGlFKUaBVN6ANoFkdAllcHA6+36XV9lChoBmgJaA9DCIApAwe0sV3AlIaUUpRoFU3oA2gWR0CWWE5DJEH/dX2UKGgGaAloD0MIG2SSkbN4XcCUhpRSlGgVTegDaBZHQJZY8CzTnaF1fZQoaAZoCWgPQwjbFI+LanFcwJSGlFKUaBVN6ANoFkdAlmCGys0YTHV9lChoBmgJaA9DCNIYraOqFmDAlIaUUpRoFU3oA2gWR0CWYMH7gsK9dX2UKGgGaAloD0MIQFBu2/ecOsCUhpRSlGgVTegDaBZHQJZ01xm03Ox1fZQoaAZoCWgPQwg1Jy8yATdgwJSGlFKUaBVN6ANoFkdAlnZRgVoHs3V9lChoBmgJaA9DCFpG6j2VnlTAlIaUUpRoFU3oA2gWR0CWh6LIxQBQdX2UKGgGaAloD0MImgXaHVLaScCUhpRSlGgVTegDaBZHQJaKP0yxiXp1fZQoaAZoCWgPQwgRHQJHAkxbwJSGlFKUaBVN6ANoFkdAloqHeBQN1HV9lChoBmgJaA9DCH12wHXFvVfAlIaUUpRoFU3oA2gWR0CWi/c0Ltu2dX2UKGgGaAloD0MIDHOCNjnFVsCUhpRSlGgVTegDaBZHQJaMaoegctJ1fZQoaAZoCWgPQwgawcb17/RLwJSGlFKUaBVN6ANoFkdAloz6pcX3xnV9lChoBmgJaA9DCC3r/rEQuFvAlIaUUpRoFU3oA2gWR0CWkPCMPz4DdX2UKGgGaAloD0MI/5QqUfbESsCUhpRSlGgVTegDaBZHQJaTGfra/RF1fZQoaAZoCWgPQwhyiSMPRMRgwJSGlFKUaBVN6ANoFkdAlpRDxLCemXV9lChoBmgJaA9DCAVrnE1HslrAlIaUUpRoFU3oA2gWR0CWl1twJgLJdX2UKGgGaAloD0MIpyA/G7kDV8CUhpRSlGgVTegDaBZHQJadvBZZB9l1fZQoaAZoCWgPQwgF4J9SJStfwJSGlFKUaBVN6ANoFkdAlqVC2x6fJ3V9lChoBmgJaA9DCJKx2vy/S1fAlIaUUpRoFU3oA2gWR0CWp7690zTGdX2UKGgGaAloD0MIlbn5RvS6YMCUhpRSlGgVTegDaBZHQJa17Ov+wTx1fZQoaAZoCWgPQwjfisQEtcphwJSGlFKUaBVN6ANoFkdAlsARLGrCFnV9lChoBmgJaA9DCN0lcVZEIVTAlIaUUpRoFU3oA2gWR0CWwybO/tY0dX2UKGgGaAloD0MIlLw6x4CyTcCUhpRSlGgVTegDaBZHQJbwPiiqQzV1fZQoaAZoCWgPQwgWFAZlGtdUwJSGlFKUaBVN6ANoFkdAlvSz7VJ+UnV9lChoBmgJaA9DCPH0SlmGAmrAlIaUUpRoFUv9aBZHQJb5xfu1F6R1fZQoaAZoCWgPQwiz6nO1FXNhwJSGlFKUaBVN6ANoFkdAlv444ACGOHV9lChoBmgJaA9DCHcrS3SWrlLAlIaUUpRoFU3oA2gWR0CXAG+GGmDUdX2UKGgGaAloD0MIjlcgelIAW8CUhpRSlGgVTegDaBZHQJcFjxUedTZ1fZQoaAZoCWgPQwhE2zF1VxtXwJSGlFKUaBVN6ANoFkdAlwfCdJ8OTnV9lChoBmgJaA9DCESoUrMHqVzAlIaUUpRoFU3oA2gWR0CXDcH3UQTVdX2UKGgGaAloD0MIBHY1ecqrW8CUhpRSlGgVTegDaBZHQJcPGLAHmih1fZQoaAZoCWgPQwhDU3b6QZxhwJSGlFKUaBVN6ANoFkdAlxj38sMAm3V9lChoBmgJaA9DCNC0xMpoS2HAlIaUUpRoFU3oA2gWR0CXIGyTY/VzdX2UKGgGaAloD0MIwocSLXnRXcCUhpRSlGgVTegDaBZHQJchsvAXVLB1fZQoaAZoCWgPQwjkLsIU5W5cwJSGlFKUaBVN6ANoFkdAlyJFZowmFHV9lChoBmgJaA9DCEqZ1NAGfVzAlIaUUpRoFU3oA2gWR0CXKQbkwN9ZdX2UKGgGaAloD0MIeLmI78SMVcCUhpRSlGgVTegDaBZHQJcpO8an7551fZQoaAZoCWgPQwgDzlKynERawJSGlFKUaBVNIgNoFkdAlyw34oJAuHV9lChoBmgJaA9DCD85ChAF/FjAlIaUUpRoFU3oA2gWR0CXPKHBUJfIdX2UKGgGaAloD0MIg1Dex9EEPMCUhpRSlGgVTegDaBZHQJc+GnxaxHJ1fZQoaAZoCWgPQwiBzw8jhLhUwJSGlFKUaBVN6ANoFkdAl08A71ZkkXV9lChoBmgJaA9DCLFPAMXIqljAlIaUUpRoFU3oA2gWR0CXUaCeVcD9dX2UKGgGaAloD0MIbqMBvAV1X8CUhpRSlGgVTegDaBZHQJdR6TxG2Cx1fZQoaAZoCWgPQwjcZb/udPNHwJSGlFKUaBVN6ANoFkdAl1NQaBI4EXV9lChoBmgJaA9DCP6eWKfKH1bAlIaUUpRoFU3oA2gWR0CXU7TqB3A3dX2UKGgGaAloD0MIc2iR7XxuXsCUhpRSlGgVTegDaBZHQJdYYwlByCF1fZQoaAZoCWgPQwgWwJSBA41awJSGlFKUaBVN6ANoFkdAl1p4VdonKHV9lChoBmgJaA9DCAvrxrujxmHAlIaUUpRoFU3oA2gWR0CXW6ixFAmidX2UKGgGaAloD0MIHSCYo8dOUcCUhpRSlGgVTegDaBZHQJdel16mfoR1fZQoaAZoCWgPQwgYfJqTF51KwJSGlFKUaBVN6ANoFkdAl2Q2kJrtV3V9lChoBmgJaA9DCN6QRgVOBV3AlIaUUpRoFU3oA2gWR0CXavZRKpT/dX2UKGgGaAloD0MIAvT7/s09S8CUhpRSlGgVTegDaBZHQJdtKEi+tbN1fZQoaAZoCWgPQwgdyHpq9XdVwJSGlFKUaBVN6ANoFkdAl3oQdwNsnHV9lChoBmgJaA9DCPxyZrtC81bAlIaUUpRoFU3oA2gWR0CXg0f779AHdX2UKGgGaAloD0MIVkW4yagmU8CUhpRSlGgVTegDaBZHQJezDG96C191fZQoaAZoCWgPQwgUWWsotVRdwJSGlFKUaBVN6ANoFkdAl7ePICEHuHV9lChoBmgJaA9DCBR4J58eRl/AlIaUUpRoFU3oA2gWR0CXvGQsPJ7tdX2UKGgGaAloD0MIghq+hXWIXMCUhpRSlGgVTegDaBZHQJfAz7FbVz91fZQoaAZoCWgPQwh3ZKw2/3pVwJSGlFKUaBVN6ANoFkdAl8Ln5BTn73V9lChoBmgJaA9DCK7xmeyfrV7AlIaUUpRoFU3oA2gWR0CXyEHwPRRedX2UKGgGaAloD0MIknh5OtfAYsCUhpRSlGgVTegDaBZHQJfKl8+iaiN1fZQoaAZoCWgPQwjuQJ3y6LNVwJSGlFKUaBVN6ANoFkdAl9EWGEf1YnV9lChoBmgJaA9DCMlzfR8OdGDAlIaUUpRoFU3oA2gWR0CX0mjTa0x/dX2UKGgGaAloD0MITcCvkSQ3U8CUhpRSlGgVTegDaBZHQJfdBO32EkB1fZQoaAZoCWgPQwiUUPpCyPtFwJSGlFKUaBVN6ANoFkdAl+TilJpWWHV9lChoBmgJaA9DCIRjlj0JOl3AlIaUUpRoFU3oA2gWR0CX5jzSThYOdX2UKGgGaAloD0MI0AziAztTW8CUhpRSlGgVTegDaBZHQJfm7jABT4t1fZQoaAZoCWgPQwjn4JnQJGFGwJSGlFKUaBVN6ANoFkdAl+46Qq7ROXV9lChoBmgJaA9DCACMZ9BQxWDAlIaUUpRoFU3oA2gWR0CX7ngsK9f1dX2UKGgGaAloD0MIVoMwt3vLU8CUhpRSlGgVTegDaBZHQJfx1ZIQOFx1fZQoaAZoCWgPQwjOx7WhYpZawJSGlFKUaBVN6ANoFkdAmAMl7Qb++HV9lChoBmgJaA9DCJXYtb3dU1DAlIaUUpRoFU3oA2gWR0CYBKivPkaNdX2UKGgGaAloD0MIHSCYo8f4X8CUhpRSlGgVTegDaBZHQJgWBwm3OOd1fZQoaAZoCWgPQwg2VmKelYJAwJSGlFKUaBVN6ANoFkdAmBjiNKh+OXV9lChoBmgJaA9DCMWtghjoV1XAlIaUUpRoFU3oA2gWR0CYGSSidrftdX2UKGgGaAloD0MIoKTAAphXU8CUhpRSlGgVTegDaBZHQJgah5LRKHx1fZQoaAZoCWgPQwjAXfbrTodfwJSGlFKUaBVN6ANoFkdAmBr1YEGJN3V9lChoBmgJaA9DCIARNGYSx1XAlIaUUpRoFU3oA2gWR0CYH6TpPhybdX2UKGgGaAloD0MIBJKwbyfvXsCUhpRSlGgVTegDaBZHQJghxhqj8DV1fZQoaAZoCWgPQwhtVn2utm1cwJSGlFKUaBVN6ANoFkdAmCMCRSxZ+3V9lChoBmgJaA9DCFysqME0PlfAlIaUUpRoFU3oA2gWR0CYJhGb1AZ9dX2UKGgGaAloD0MIv5tu2SGIXsCUhpRSlGgVTegDaBZHQJgsW0+kgwJ1fZQoaAZoCWgPQwgz4Zf6ebVgwJSGlFKUaBVN6ANoFkdAmDPqxC6YmnV9lChoBmgJaA9DCHbhB+fTzWDAlIaUUpRoFU3oA2gWR0CYNn1jAi3YdX2UKGgGaAloD0MIXeDyWDNqWcCUhpRSlGgVTegDaBZHQJhFiQmu1Wt1fZQoaAZoCWgPQwi94xQdyVVhwJSGlFKUaBVN6ANoFkdAmFBJWzWwvHV9lChoBmgJaA9DCK2kFd/QlGDAlIaUUpRoFU3oA2gWR0CYhGyVObiIdX2UKGgGaAloD0MIY5y/CQVXZ8CUhpRSlGgVTRgDaBZHQJiGyvFFUhp1fZQoaAZoCWgPQwhKtU/HY/ZdwJSGlFKUaBVN6ANoFkdAmIkktuk1uXV9lChoBmgJaA9DCMefqGxYtlvAlIaUUpRoFU3oA2gWR0CYjkOuaF23dX2UKGgGaAloD0MIzJpY4CtrUcCUhpRSlGgVTegDaBZHQJiSrehwl0J1fZQoaAZoCWgPQwiqZtZSwJthwJSGlFKUaBVN6ANoFkdAmJTWJ3xFzHVlLg=="
72
+ },
73
+ "ep_success_buffer": {
74
+ ":type:": "<class 'collections.deque'>",
75
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
76
+ },
77
+ "_n_updates": 7423,
78
+ "buffer_size": 1000000,
79
+ "batch_size": 64,
80
+ "learning_starts": 50000,
81
+ "tau": 1.0,
82
+ "gamma": 0.9999,
83
+ "gradient_steps": 1,
84
+ "optimize_memory_usage": false,
85
+ "replay_buffer_class": {
86
+ ":type:": "<class 'abc.ABCMeta'>",
87
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
88
+ "__module__": "stable_baselines3.common.buffers",
89
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
90
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f798cc01950>",
91
+ "add": "<function ReplayBuffer.add at 0x7f798cc019e0>",
92
+ "sample": "<function ReplayBuffer.sample at 0x7f798cc01a70>",
93
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f798cc01b00>",
94
+ "__abstractmethods__": "frozenset()",
95
+ "_abc_impl": "<_abc_data object at 0x7f798cc00120>"
96
+ },
97
+ "replay_buffer_kwargs": {},
98
+ "train_freq": {
99
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
100
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
101
+ },
102
+ "actor": null,
103
+ "use_sde_at_warmup": false,
104
+ "exploration_initial_eps": 1.0,
105
+ "exploration_final_eps": 0.05,
106
+ "exploration_fraction": 0.1,
107
+ "target_update_interval": 312,
108
+ "_n_calls": 31252,
109
+ "max_grad_norm": 10,
110
+ "exploration_rate": 0.05,
111
+ "exploration_schedule": {
112
+ ":type:": "<class 'function'>",
113
+ ":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
114
+ }
115
+ }
LunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b83acac61d2e99bd4a505acaf866a35fe1445e66c1219dbb26df6672f2272823
3
+ size 43265
LunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34804ad3458626ec88c99f8a5212555c5b6dcbb0cc8419cef5b24922666d5889
3
+ size 44033
LunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -112.74 +/- 52.58
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **DQN** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f798cc2bdd0>", "_build": "<function DQNPolicy._build at 0x7f798cc2be60>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f798cc2bef0>", "forward": "<function DQNPolicy.forward at 0x7f798cc2bf80>", "_predict": "<function DQNPolicy._predict at 0x7f798cbae050>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f798cbae0e0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f798cbae170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f798cc2a240>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAO16GiL6t6UonUuUd0hnjmYLUCg6SdA3zCEX7tkto2Skc4wrNlSP8x6m04i9Jh1Kkws2gASNvoF9fIlBXc4LUTWyiFsjAPDmlUpGdIe2tp4joAyX/961ASUjtIxucDs50Cu/bXp2RbVVwcFNFPHOyY3lnHYhzvBp7iF9q4WRaoo7TCLxcd3YV86CC8//blHCDXmh7rmO9J26sBGbjbVvddP6yJM0WD+Fq8LU+Pw3MLtegb8IOfXr0PFW3aEKWX2ZOQBqrr8ghAtZzziGSfjv5WVwA4Z9NHmf5qwiszuCCB6cyRkpYbJY1o1thWqlQvkCP4JbCLuQnEbqz9NG7NFirjpVoLeUOHWVnXhAP63rnS+dQNYdFNAcMp1zQThhp0NNDo1Bnja0QK9OA6qgKs9qCT3jIlD5jdwPrJbhwM5eKG5FGnTFwOwNGvJw/aYDcuiisBppWlAD7oQfyjSqE06/g7RCOOn+sul8ZGhP8SQ4GYRJydnwZz8SaGp51btqjdZ4iNsLmqb7cDWfwJ2g9awTG62kLkdVNiU9AVh8tH3TZHmzUwjLSgCoF+cy8mnk5QtrNuV16fNs2gq9fGnGMFIphEdDOeb1M5bRRXEttpy1KtJ9w8WAdJS0OEfrgsr9RkeljwAxHf6tfzciip5B2WnHj64DNK3x0GetSCacBXC6H1A53dMWBJ7T+qqvvsC1MFGGCfmj7iPOl9XIpBRIXOrEVI/aMcCQwkpBP6Cot+lx6KFENhdSwqJopFLEefYgweJxhBchFHZJigFhd1LXtvUx8clNTU8esM3MzSZNQEmgyGOsLCbmIu/u8d86IScn0TM+P41KqGtxQoEzlOdXyLNxyH3Er3s8zDbnvnmqPxkjuUZ3M3c+J2sW5VpFpxatQG5DqjK+QHPhV9uGyCdKz3/BTFEXl5R5e7Vg69I+E0amIuO0d8RKYuesHL2ch//o907m3I8xxsVIOgl7E8I5Eo5JBWNZibj5epRFMvQAJm19n++38dqT6j6yt5NbGomfdacKcFBWGMLmf4Q4d0lkKcitCOQb7+4rtCxWv569wz/gB3FMDso27nIcmVCqAmwDk/C7qSKcZnqKYnNCwNQLXTXqq/CeuEf2dWkJkq84BqYRiW2J0puwE/JKLERddLfDFTkTjFchOH0ue6YZkVuG5UPo/6fpRDgzbrM2ztt3el97FbrAwt21UYWstbH4IHBbzJH0nTsUGV+Gi6fDytgCnasFy/i2JrvMNK1jeKLxr+rXH4t07oeWREuGQ6/j7yU2bke0cRKy2oy3Rreptk63iloAOsl6mQ8AjzXexrJzICE+2vUEo+lgLn0SoUTEKOWhejPNtfUVAj43NqMiFW36+WwBsydUiv0DFD2GVVr1uekNlz/bdLFTHWYlJrsNgwRorbmJGPJV2FO2rQUZm8OoE7eiv3se60vs19pLFpgekXB2G3psj9HnkpragbCs64VHlYHyLZk63Vg08EQqsEQfZudfCq5m15mnOfuq5rMMxIBgQP/446PX5BE6Gm9VOTkwLHkNNnnaVyv6JVN9IxjsuJl1Jj4fK1Avc5LZYzjHQjfp38ITfdmuvs5Lyfec9Vtn+cjCbc/YPnRq2SncHpiYT8KtXRmfQw3bbe5ShsPalb7Z10nLOcFFD4KyvAcZSPGaud+NdJFKZEPFUZqe3TB3Lb72oCd74Mtmak2L6ZssCB5xaRfkH+jcZpWsmFHbAuiOU4o4LV5DUXF/CLr+5W+gOMIaj5u95pkYtok8oe0vBR/JJyWO3O9M3p+uPCp4OW2e8X539rehHty0/SqKxzz/ZJI/zA8BzBN6RQ8J2ELYaol95Qki8eU3mvvgHtOIwaJIb0InNgHC+OxioddnVxnQhRb5b5pzeVZVM4LfT4jcS5UK5eezH/b7uoDg24+9ibEL8yWrKFcnk0Lu+MQW2JQ9eZvkGSRn7mkAhOX1yKgxXUFPpE1xLc+G8+PhOseksv/P7GN6gKVnLh62XKvBX+olWrBwAOAhkO/Xb7AdWXKD593eZ3y5CrIXjq/DsQD/kXIqenLl54gmy5xbOIWX5DwnQeA/Ga/B+kXTfN+T+0hYwKPlcBA17cFz5SKJMfowwLoQRB/YCcX7ZdvicViwmkk7vmgF0VKMmGbXvpociQGGmKLCNJRZkAKkrxTBT//PLJd5Mi6BtOhxIjwZkTD1VBMyf3LhCkW5j9jglXX6//ieLYwqhFEkG//E8NReAPJ7Hp1f3BPmn+hrDuCOmE8HC7zqDZl8A2y1/cd3s4XarhIeM4TnTu9QsuRK4QeuAtMQfD3fsRDxQp6QcKoIs7WEXqlOG4d3R29R7NNnwOuaQ2FY98q3LBIP1H1/7trlJouuDrmhnmlP9KhHZYot2/+xgmHlVIy0ecHzL1k5nt2ygLVONZRex1BGtZZU2Ij9H0Gd+KDc0mDPtA5VFLoZqBhJiBMyMNLW5w9woLS0AS4nFbZqx+G7wv6+95DULWCljzTR5doy8UWLoLnMAq7XTubw31ka8v+szkTh4UqpzxBLoOB0tyshM+Yuk5TtEzg4pPNVWEJOH1A/7NS8FWWbXtHRrTM56giqOUvmSMnFsnlByK/BqEk93Z4qM4kA/74FNzRInL2mo2X4U1eGUTdCQ4BoV0g71lMNKsdXSGydkAZ9ek1kcK26qF8j3SiuSyNAx2FeQ/hcW0hul/qG5Pncf2+1JFS/Z7SsMfoI0HWWWC4iTYKt+cKlU5kJ37lZ34fNPoWH4AtPP99sUEOJzL0SLSnMawCQZSuL4Imv/5IXrspOejYHD1LUuCgFMW4UbntwlRerk9Qfw4OmRUAtu2f4TVavNhF+gPhb5UPhUkFyZ2Yil8r/pe1cyCUktLYUFfsfMpCs3BjSfsOq8cfNwhdp0zv2a6TmCKgQwXXL4jcp4NfpFNUXGkc4CdbOdnFLJGpRtuCCsCG/GFF+F8LHsHE56QZ62y/Ia1mY7JwjMYEt5UJlyqhfLg8ij/4mlTdolWCuHnZZ/lK+59L8mWyF697bWYyjYSZ+kCAu6WtGcVOitEL8AifnY6Frs0REAtIaXedj6/fw4w7tTWynG28ji59i1WsZhT+FHVqxBXzyidi4j48ViD/PBAIljnIxhghs9/GzLbF8DhhmjaasgEyHFtqFFCqbbCGhG7sjESpmJ0xLJuGSTtY9jTcb6t5eQltiROYnvbiX2OTfrFqGLoaQJQyfUt2f2QrfeeI2/KDgfKpyroytNChkm7+DQA/Ojhiipzdfz01yyiou/RaZcaBy8I0c0iDqj3ZKfRalv+Cbe2FCNqe5VP4h7r4dCfAnU3jk/s+MQkTMuo9iz4ZKrlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNIAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 32, "num_timesteps": 1000064, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651677011.6722314, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAPpQLr803K4/6ItwvfukFLoi4dI8A1wKvQAAAAAAAAAAEzkZvhOAQz96WaS7pbVHvEz8IT0WxAu9AAAAAAAAAABCC1e/atGiPwqwZ73PFHE7f9TFPCHoAr0AAAAAAAAAAMU6o76aemI/QJpnvVPfn7v4dAC7ixsjvQAAAAAAAAAALd8DPtaKrT81nqU+tdBPvHY4PT6FXX8+AAAAAAAAAACC5Ie+Wt2JPyqLxLzlYRW92gxpvOzNRT0AAAAAAAAAANpSnL5VdIg/i0UIOw7fn7zhSUA9kEW8uwAAAAAAAAAAmO+fvjlreT9a4yI9CqzhvNHsTzyR0QY+AAAAAAAAAACqSqS+OBmSP3LPK71Ghnw7OdajO6WgUr0AAAAAAAAAAIj/Er87Uag/2w0hvW+VxzwhoTo9tktBvAAAAAAAAAAAmqLWvDTRsj8YnTq+ex0AvdDacr03Zxu9AAAAAAAAAACwgKm+vo+PPztJpryHIUC8QhgrPbL0Ej0AAAAAAAAAAAq/2b762YY/fqefvZk0/jtc7pi8VYL4PAAAAAAAAAAAJsYOPni/sD8+2Qo/EAgNvQwwEj4zCXw+AAAAAAAAAAAAx9C+q8GFP0Yfnzw5TYu8CeiTPS11Ib0AAAAAAAAAADMTYjo3RFg/l0w2vJZDPr2uzxk9CkQ+vAAAAAAAAAAABoIkv+HomT+VtVO9jM0aOy0D3jy23nC8AAAAAAAAAABbIO6+ameaP40nH72rCrW8ucwmPTADkLwAAAAAAAAAAADMHTxFmHY/eqFIvf+vOLz+OUq9qV6GPQAAAAAAAAAARo8TPnUZ8T5jymQ9jJc2vMKpCz19aN88AAAAAAAAAABw1Sq/VbegP/DT5r13vlc9B4bMvM7eeLwAAAAAAAAAAH5MUr8/6qM/OEFFvc3lRLzjGTY8mO+NPQAAAAAAAAAA4DMLvy/hmz+mHhe9T6ECPTzoGz0ua3Y7AAAAAAAAAADdQpK+QMlmP309U7389YU7NQhzPLVLK7wAAAAAAAAAAGHgK7/3UIU/oOvgvrwu4Tx6K/K+6RqsvAAAAAAAAAAAc9cUv1RQgj8yTNS8og88O800KbzDw+Y8AAAAAAAAAAAD7r2+BlmJP1ckBb3ErIo8Z/sYvPKOKj0AAAAAAAAAAFZBAL8HJa0/GuGPvYZOvrwR8BG8yl31PAAAAAAAAAAAzc9kPcjgqz+SHhK+6vcPvZ/sqT2eEjm+AAAAAAAAAAA2vFa+oXWMPzpOn72nD6W8SuuOPKYemL0AAAAAAAAAANNMAr4Uqak/mqRNvrwIg7pSRfK9hr5ovQAAAAAAAAAAfRLBvtQLoj/63Fa9kT/VvEc7IDtYGgY9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAF4pLr+l3K4/9NmQvUzG0jwlt+A86hFrPAAAAAAAAAAAZicZvhySQz+aWaS7ejNtPEz5KD0ZxAu9AAAAAAAAAAAg5Va/uM6iP0DJhr26APg8tuvSPGqspjsAAAAAAAAAAAPuor7LgWI/qHJSveCRFrxb3gE4hpQOvQAAAAAAAAAAmm4APheTrT/JnaU+TE1lPMlzMD44Xn8+AAAAAAAAAABDyIe+QviJP5oaKr1l3RC9Nk6IvOa0Aj0AAAAAAAAAADJVnL66gog/tlTau7y55zsed0E90K/vPAAAAAAAAAAAdSygvsqTeT9W4yI9TgpmuucjyDut0QY+AAAAAAAAAABDEKS+ZBaSP8MZUr3/s/w8fxb4O6phZbwAAAAAAAAAAF/lEr9IP6g/X6clveHEuzquCz09+eSEvAAAAAAAAAAAZozHvDbosj8iPzG+cZWUu6cVa706i5i9AAAAAAAAAAB2aKm+W5iPPyUc6ry5nbe8OL8jPeNC0jwAAAAAAAAAAN5a2b5F1IY/a56OvbuAlbxHW6W8/ZUjPQAAAAAAAAAABhgJPgbYsD9Znw8/qUNfvUeWBT7ZtII+AAAAAAAAAADa3dC+R86FPzntGz3li1S8XfGXPdsfw7wAAAAAAAAAAGZmgDq6iFg/elGBuhZUnbyHMBw9+HpWvQAAAAAAAAAAql8kvyXnmT/4Qne9NkXrPL8I5DyzyKQ8AAAAAAAAAABC7O2+uneaP+Cn+7yuIas7Z2YqPZ44Tr0AAAAAAAAAADNHJTwPqXY/LQ2OvYTVHb3bqVe98tZMPQAAAAAAAAAAQPkSPjw68T4CB4I9QUWNvPATBj3bmAc9AAAAAAAAAAASiyq/fJCgPzgX+L3lOWQ8Qk3GvE5zrLwAAAAAAAAAADsvUr8Y86M/f3sjvQLXajxBp/o7164UPQAAAAAAAAAA0hsLv6vJmz9wVfe8X3aNOxojGz3Yie47AAAAAAAAAACT/pG+O8NmPy7eS73G20u8zph7PGG2HrwAAAAAAAAAANy/Kr92PIU/A9rzvvKAXTzLofG+0J7VvAAAAAAAAAAAZscUvzlOgj8yTNS8W/bxPF5IQLy9w+Y8AAAAAAAAAAArxr2+jkyJP4lIEL2tW0m8/Bc7vGKCIz0AAAAAAAAAAEsUAL8pNq0/GuGPvWAvYTtteSq82F31PAAAAAAAAAAAswdrPRb7qz/tbfm9XJ4uvXtuvD06ESm+AAAAAAAAAABw5lW+hISMPz9On71Jm9U7zVetPLAemL0AAAAAAAAAAOA2AL6mqak/1S1lvjvmgLzBc+y9fIaTvQAAAAAAAAAA5s/AvgQfoj/63Fa9l54mOjDMUzpUGgY9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_episode_num": 2319, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -6.4000000000064e-05, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlbcjnJaDYsCUhpRSlIwBbJRN6AOMAXSUR0CWNJxfv4M4dX2UKGgGaAloD0MIuMoTCDvcWsCUhpRSlGgVTegDaBZHQJY2rHeaa1F1fZQoaAZoCWgPQwjXEvJBz3VzwJSGlFKUaBVL9GgWR0CWO9Hy3CsPdX2UKGgGaAloD0MIjbW/sz3RXcCUhpRSlGgVTegDaBZHQJY+B1Ng0CR1fZQoaAZoCWgPQwgP7WMFvzBXwJSGlFKUaBVN6ANoFkdAlkQ2Ts6aLHV9lChoBmgJaA9DCPmdJjPetl7AlIaUUpRoFU3oA2gWR0CWRW7EHdGidX2UKGgGaAloD0MIAizy64eDYcCUhpRSlGgVTdEDaBZHQJZPlAE+xGF1fZQoaAZoCWgPQwhkOnR63jRRwJSGlFKUaBVN6ANoFkdAllcHA6+36XV9lChoBmgJaA9DCIApAwe0sV3AlIaUUpRoFU3oA2gWR0CWWE5DJEH/dX2UKGgGaAloD0MIG2SSkbN4XcCUhpRSlGgVTegDaBZHQJZY8CzTnaF1fZQoaAZoCWgPQwjbFI+LanFcwJSGlFKUaBVN6ANoFkdAlmCGys0YTHV9lChoBmgJaA9DCNIYraOqFmDAlIaUUpRoFU3oA2gWR0CWYMH7gsK9dX2UKGgGaAloD0MIQFBu2/ecOsCUhpRSlGgVTegDaBZHQJZ01xm03Ox1fZQoaAZoCWgPQwg1Jy8yATdgwJSGlFKUaBVN6ANoFkdAlnZRgVoHs3V9lChoBmgJaA9DCFpG6j2VnlTAlIaUUpRoFU3oA2gWR0CWh6LIxQBQdX2UKGgGaAloD0MImgXaHVLaScCUhpRSlGgVTegDaBZHQJaKP0yxiXp1fZQoaAZoCWgPQwgRHQJHAkxbwJSGlFKUaBVN6ANoFkdAloqHeBQN1HV9lChoBmgJaA9DCH12wHXFvVfAlIaUUpRoFU3oA2gWR0CWi/c0Ltu2dX2UKGgGaAloD0MIDHOCNjnFVsCUhpRSlGgVTegDaBZHQJaMaoegctJ1fZQoaAZoCWgPQwgawcb17/RLwJSGlFKUaBVN6ANoFkdAloz6pcX3xnV9lChoBmgJaA9DCC3r/rEQuFvAlIaUUpRoFU3oA2gWR0CWkPCMPz4DdX2UKGgGaAloD0MI/5QqUfbESsCUhpRSlGgVTegDaBZHQJaTGfra/RF1fZQoaAZoCWgPQwhyiSMPRMRgwJSGlFKUaBVN6ANoFkdAlpRDxLCemXV9lChoBmgJaA9DCAVrnE1HslrAlIaUUpRoFU3oA2gWR0CWl1twJgLJdX2UKGgGaAloD0MIpyA/G7kDV8CUhpRSlGgVTegDaBZHQJadvBZZB9l1fZQoaAZoCWgPQwgF4J9SJStfwJSGlFKUaBVN6ANoFkdAlqVC2x6fJ3V9lChoBmgJaA9DCJKx2vy/S1fAlIaUUpRoFU3oA2gWR0CWp7690zTGdX2UKGgGaAloD0MIlbn5RvS6YMCUhpRSlGgVTegDaBZHQJa17Ov+wTx1fZQoaAZoCWgPQwjfisQEtcphwJSGlFKUaBVN6ANoFkdAlsARLGrCFnV9lChoBmgJaA9DCN0lcVZEIVTAlIaUUpRoFU3oA2gWR0CWwybO/tY0dX2UKGgGaAloD0MIlLw6x4CyTcCUhpRSlGgVTegDaBZHQJbwPiiqQzV1fZQoaAZoCWgPQwgWFAZlGtdUwJSGlFKUaBVN6ANoFkdAlvSz7VJ+UnV9lChoBmgJaA9DCPH0SlmGAmrAlIaUUpRoFUv9aBZHQJb5xfu1F6R1fZQoaAZoCWgPQwiz6nO1FXNhwJSGlFKUaBVN6ANoFkdAlv444ACGOHV9lChoBmgJaA9DCHcrS3SWrlLAlIaUUpRoFU3oA2gWR0CXAG+GGmDUdX2UKGgGaAloD0MIjlcgelIAW8CUhpRSlGgVTegDaBZHQJcFjxUedTZ1fZQoaAZoCWgPQwhE2zF1VxtXwJSGlFKUaBVN6ANoFkdAlwfCdJ8OTnV9lChoBmgJaA9DCESoUrMHqVzAlIaUUpRoFU3oA2gWR0CXDcH3UQTVdX2UKGgGaAloD0MIBHY1ecqrW8CUhpRSlGgVTegDaBZHQJcPGLAHmih1fZQoaAZoCWgPQwhDU3b6QZxhwJSGlFKUaBVN6ANoFkdAlxj38sMAm3V9lChoBmgJaA9DCNC0xMpoS2HAlIaUUpRoFU3oA2gWR0CXIGyTY/VzdX2UKGgGaAloD0MIwocSLXnRXcCUhpRSlGgVTegDaBZHQJchsvAXVLB1fZQoaAZoCWgPQwjkLsIU5W5cwJSGlFKUaBVN6ANoFkdAlyJFZowmFHV9lChoBmgJaA9DCEqZ1NAGfVzAlIaUUpRoFU3oA2gWR0CXKQbkwN9ZdX2UKGgGaAloD0MIeLmI78SMVcCUhpRSlGgVTegDaBZHQJcpO8an7551fZQoaAZoCWgPQwgDzlKynERawJSGlFKUaBVNIgNoFkdAlyw34oJAuHV9lChoBmgJaA9DCD85ChAF/FjAlIaUUpRoFU3oA2gWR0CXPKHBUJfIdX2UKGgGaAloD0MIg1Dex9EEPMCUhpRSlGgVTegDaBZHQJc+GnxaxHJ1fZQoaAZoCWgPQwiBzw8jhLhUwJSGlFKUaBVN6ANoFkdAl08A71ZkkXV9lChoBmgJaA9DCLFPAMXIqljAlIaUUpRoFU3oA2gWR0CXUaCeVcD9dX2UKGgGaAloD0MIbqMBvAV1X8CUhpRSlGgVTegDaBZHQJdR6TxG2Cx1fZQoaAZoCWgPQwjcZb/udPNHwJSGlFKUaBVN6ANoFkdAl1NQaBI4EXV9lChoBmgJaA9DCP6eWKfKH1bAlIaUUpRoFU3oA2gWR0CXU7TqB3A3dX2UKGgGaAloD0MIc2iR7XxuXsCUhpRSlGgVTegDaBZHQJdYYwlByCF1fZQoaAZoCWgPQwgWwJSBA41awJSGlFKUaBVN6ANoFkdAl1p4VdonKHV9lChoBmgJaA9DCAvrxrujxmHAlIaUUpRoFU3oA2gWR0CXW6ixFAmidX2UKGgGaAloD0MIHSCYo8dOUcCUhpRSlGgVTegDaBZHQJdel16mfoR1fZQoaAZoCWgPQwgYfJqTF51KwJSGlFKUaBVN6ANoFkdAl2Q2kJrtV3V9lChoBmgJaA9DCN6QRgVOBV3AlIaUUpRoFU3oA2gWR0CXavZRKpT/dX2UKGgGaAloD0MIAvT7/s09S8CUhpRSlGgVTegDaBZHQJdtKEi+tbN1fZQoaAZoCWgPQwgdyHpq9XdVwJSGlFKUaBVN6ANoFkdAl3oQdwNsnHV9lChoBmgJaA9DCPxyZrtC81bAlIaUUpRoFU3oA2gWR0CXg0f779AHdX2UKGgGaAloD0MIVkW4yagmU8CUhpRSlGgVTegDaBZHQJezDG96C191fZQoaAZoCWgPQwgUWWsotVRdwJSGlFKUaBVN6ANoFkdAl7ePICEHuHV9lChoBmgJaA9DCBR4J58eRl/AlIaUUpRoFU3oA2gWR0CXvGQsPJ7tdX2UKGgGaAloD0MIghq+hXWIXMCUhpRSlGgVTegDaBZHQJfAz7FbVz91fZQoaAZoCWgPQwh3ZKw2/3pVwJSGlFKUaBVN6ANoFkdAl8Ln5BTn73V9lChoBmgJaA9DCK7xmeyfrV7AlIaUUpRoFU3oA2gWR0CXyEHwPRRedX2UKGgGaAloD0MIknh5OtfAYsCUhpRSlGgVTegDaBZHQJfKl8+iaiN1fZQoaAZoCWgPQwjuQJ3y6LNVwJSGlFKUaBVN6ANoFkdAl9EWGEf1YnV9lChoBmgJaA9DCMlzfR8OdGDAlIaUUpRoFU3oA2gWR0CX0mjTa0x/dX2UKGgGaAloD0MITcCvkSQ3U8CUhpRSlGgVTegDaBZHQJfdBO32EkB1fZQoaAZoCWgPQwiUUPpCyPtFwJSGlFKUaBVN6ANoFkdAl+TilJpWWHV9lChoBmgJaA9DCIRjlj0JOl3AlIaUUpRoFU3oA2gWR0CX5jzSThYOdX2UKGgGaAloD0MI0AziAztTW8CUhpRSlGgVTegDaBZHQJfm7jABT4t1fZQoaAZoCWgPQwjn4JnQJGFGwJSGlFKUaBVN6ANoFkdAl+46Qq7ROXV9lChoBmgJaA9DCACMZ9BQxWDAlIaUUpRoFU3oA2gWR0CX7ngsK9f1dX2UKGgGaAloD0MIVoMwt3vLU8CUhpRSlGgVTegDaBZHQJfx1ZIQOFx1fZQoaAZoCWgPQwjOx7WhYpZawJSGlFKUaBVN6ANoFkdAmAMl7Qb++HV9lChoBmgJaA9DCJXYtb3dU1DAlIaUUpRoFU3oA2gWR0CYBKivPkaNdX2UKGgGaAloD0MIHSCYo8f4X8CUhpRSlGgVTegDaBZHQJgWBwm3OOd1fZQoaAZoCWgPQwg2VmKelYJAwJSGlFKUaBVN6ANoFkdAmBjiNKh+OXV9lChoBmgJaA9DCMWtghjoV1XAlIaUUpRoFU3oA2gWR0CYGSSidrftdX2UKGgGaAloD0MIoKTAAphXU8CUhpRSlGgVTegDaBZHQJgah5LRKHx1fZQoaAZoCWgPQwjAXfbrTodfwJSGlFKUaBVN6ANoFkdAmBr1YEGJN3V9lChoBmgJaA9DCIARNGYSx1XAlIaUUpRoFU3oA2gWR0CYH6TpPhybdX2UKGgGaAloD0MIBJKwbyfvXsCUhpRSlGgVTegDaBZHQJghxhqj8DV1fZQoaAZoCWgPQwhtVn2utm1cwJSGlFKUaBVN6ANoFkdAmCMCRSxZ+3V9lChoBmgJaA9DCFysqME0PlfAlIaUUpRoFU3oA2gWR0CYJhGb1AZ9dX2UKGgGaAloD0MIv5tu2SGIXsCUhpRSlGgVTegDaBZHQJgsW0+kgwJ1fZQoaAZoCWgPQwgz4Zf6ebVgwJSGlFKUaBVN6ANoFkdAmDPqxC6YmnV9lChoBmgJaA9DCHbhB+fTzWDAlIaUUpRoFU3oA2gWR0CYNn1jAi3YdX2UKGgGaAloD0MIXeDyWDNqWcCUhpRSlGgVTegDaBZHQJhFiQmu1Wt1fZQoaAZoCWgPQwi94xQdyVVhwJSGlFKUaBVN6ANoFkdAmFBJWzWwvHV9lChoBmgJaA9DCK2kFd/QlGDAlIaUUpRoFU3oA2gWR0CYhGyVObiIdX2UKGgGaAloD0MIY5y/CQVXZ8CUhpRSlGgVTRgDaBZHQJiGyvFFUhp1fZQoaAZoCWgPQwhKtU/HY/ZdwJSGlFKUaBVN6ANoFkdAmIkktuk1uXV9lChoBmgJaA9DCMefqGxYtlvAlIaUUpRoFU3oA2gWR0CYjkOuaF23dX2UKGgGaAloD0MIzJpY4CtrUcCUhpRSlGgVTegDaBZHQJiSrehwl0J1fZQoaAZoCWgPQwiqZtZSwJthwJSGlFKUaBVN6ANoFkdAmJTWJ3xFzHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7423, "buffer_size": 1000000, "batch_size": 64, "learning_starts": 50000, "tau": 1.0, "gamma": 0.9999, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f798cc01950>", "add": "<function ReplayBuffer.add at 0x7f798cc019e0>", "sample": "<function ReplayBuffer.sample at 0x7f798cc01a70>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f798cc01b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f798cc00120>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 312, "_n_calls": 31252, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7580a51bc5b5b59fbd25e2d8634d33369d7e5e663d0631c0a9d9a2324b689541
3
+ size 250756
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -112.74220731508103, "std_reward": 52.575250088335, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T15:36:01.285264"}