--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_1_0 metrics: - wer model-index: - name: Whisper Small En2 - eren ozaltun results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 1.0 type: mozilla-foundation/common_voice_1_0 args: 'config: en, split: test' metrics: - name: Wer type: wer value: 25.853658536585368 --- # Whisper Small En2 - eren ozaltun This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 1.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8319 - Wer: 25.8537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0 | 1000.0 | 1000 | 0.7458 | 25.8537 | | 0.0 | 2000.0 | 2000 | 0.7971 | 25.3659 | | 0.0 | 3000.0 | 3000 | 0.8233 | 25.8537 | | 0.0 | 4000.0 | 4000 | 0.8319 | 25.8537 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1