--- license: apache-2.0 datasets: - OpenAssistant/oasst1 - EleutherAI/pile language: - en - es - ar - fr - fa metrics: - accuracy - bleu pipeline_tag: text-generation tags: - code --- this model uses Task classification and the conversation is between USER and Answer or AI # NOTE ⚠️ THE JAX/FLAX version of model is available both for training and usage And This model support context length of 3300 this model support run with OST_UI so heres how to run it with just one command ```shell git clone https://github.com/erfanzar/OST-OpenSourceTransformers cd OST-OpenSourceTransformers/ python3 OST_UI/app.py --model_id='erfanzar/chatLGeM' -- ``` ## Examples 🚀 ```text <|prompter|> TEXT <|assistant|> ``` or Just Simply Open [GOOGLE COLAB 🚀🚀](https://colab.research.google.com/drive/1nWS_FhWIDH3-g56F3FbWCIYi0ngVdWHx?usp=sharing) ### Generate Method to get res Text by Text ```python def generate(model_,input_ids_,tokeinzer_,max_length:int=3300,temperature :float= 0.2,eos_token_id:int=2): with torch.no_grad(): before_start = len(input_ids_[0])+1 for _ in range(max_length): out = model_( input_ids=input_ids_, return_dict=True, ) opa = torch.nn.functional.softmax(out.logits[:,-1,:]/temperature) Camila = torch.multinomial(opa,1) input_ids_ = torch.cat([input_ids_,Camila],-1) clear_output(wait=True) print(f"\r{tokeinzer_.decode(input_ids_[0],skip_special_tokens=True)[before_start:]}",end='') if Camila[0].item() == eos_token_id: break yield tokeinzer_.decode(Camila[0],skip_special_tokens=True) return f"{tokeinzer_.decode(input_ids_[0],skip_special_tokens=True)[before_start:]}" ``` ### Result ```python import socket import time def check_internet_connection(): try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect(("www.google.com", 80)) print("Internet connection is active.") except: print("Internet connection is not active.") if __name__ == "__main__": check_internet_connection() ``` # Using Model in OST ### LGeM 🚀 - what is LGeM, LGeM is a CausalLM Model that is trained on self instruct data (Alpaca data) and for initialization of the first train of the main model (weights are available) I used pre weights from Alpaca LoRA (open source) - it's Decoder Only - built-in Pytorch and Jax - you can simply import models like (In EasyDeL or OST Library) ```python # Pytorch from modules import LGeMForCausalLM # Jax from modules import FlaxLGeMForCausalLM ``` - and Training code is available at jax_train.py (check source) - training parameters - - learning rate 2e-5 - - Optimizer AdamW - - batch 32 - - TPU POD - - Train Time 50 hours - - budget 500 $ ``` shell python3 LGeM-train.py ```