--- license: apache-2.0 datasets: - OpenAssistant/oasst1 - EleutherAI/pile language: - en - es - ar - fr - fa metrics: - accuracy - bleu pipeline_tag: text-generation tags: - code --- this model uses Task classification and the conversation is between USER and Answer or AI # NOTE ⚠️ THE JAX/FLAX version of model is available both for training and usage # Using Model in Huggingface Transformers ## Examples 🚀 ```text <\s><|prompter|> TEXT <\s><|ai|> ``` For Byte by Byte Generation, You can use this code ```python # It's recommended to use PipeLine # Make Sure that you have sentence piece,bits and bytes and accelerate installed from transformers import LlamaTokenizer, LlamaForCausalLM, pipeline, GenerationConfig import torch from IPython.display import clear_output import textwrap from typing import List, Optional import re import base64 tokenizer = LlamaTokenizer.from_pretrained("erfanzar/LGeM-7B-MT") model = LlamaForCausalLM.from_pretrained( 'erfanzar/LGeM-7B-MT', load_in_8bit=True, device_map='auto', torch_dtype=torch.float16 ) def generator(input_text,pipe_line,max_number=256,do_print=False ,args_a=False): verify_text = lambda txt : '\n'.join([textwrap.fill(txt, width=140) for txt in txt.split('\n')]) orginal_text = input_text if not input_text.startswith(f'{task}: USER:') and args_a: input_text = f'<\s><|prompter|> {input_text}<\s><|ai|>' for i in range(max_number): exac = input_text with torch.no_grad(): output = pipe_line(input_text) input_text = output[0]['generated_text'] if do_print: clear_output(wait=True) print(verify_text(input_text)) if input_text.endswith('<\s>') and i>6 or exac == input_text or input_text.endswith('<|prompter|>') and i>6: break yield verify_text(input_text) ``` And Use just like ```python pipe_line = pipeline( "text-generation", model=model, tokenizer=tokenizer, temperature=0.8, top_p=0.95, max_new_tokens=4, output_scores=True ) ``` or Just Simply Open [GOOGLE COLAB 🚀🚀](https://colab.research.google.com/drive/1nWS_FhWIDH3-g56F3FbWCIYi0ngVdWHx?usp=sharing) ### Generate Method to get res Text by Text ```python def generate(model_,input_ids_,tokeinzer_,max_length:int=256,temperature :float= 1,eos_token_id:int=2): with torch.no_grad(): before_start = len(input_ids_[0])+1 for _ in range(max_length): out = model_( input_ids=input_ids_, return_dict=True, ) opa = torch.nn.functional.softmax(out.logits[:,-1,:]/temperature) Camila = torch.multinomial(opa,1) input_ids_ = torch.cat([input_ids_,Camila],-1) clear_output(wait=True) print(f"\r{tokeinzer_.decode(input_ids_[0],skip_special_tokens=True)[before_start:]}",end='') if Camila[0].item() == eos_token_id: break yield tokeinzer_.decode(Camila[0],skip_special_tokens=True) return f"{tokeinzer_.decode(input_ids_[0],skip_special_tokens=True)[before_start:]}" ``` ### Result ```python import socket import time def check_internet_connection(): try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect(("www.google.com", 80)) print("Internet connection is active.") except: print("Internet connection is not active.") if __name__ == "__main__": check_internet_connection() ``` # Using Model in OST ### LGeM 🚀 - what is LGeM, LGeM is a CausalLM Model that is trained on self instruct data (Alpaca data) and for initialization of the first train of the main model (weights are available) I used pre weights from Alpaca LoRA (open source) - it's Decoder Only - built-in Pytorch and Jax - you can simply import models like (In EasyDeL or OST Library) ```python # Pytorch from modules import LGeMForCausalLM # Jax from modules import FlaxLGeMForCausalLM ``` - and Training code is available at jax_train.py (check source) - training parameters - - learning rate 5e-5 - - Optimizer LION - - batch 32 - - TPU POD - - Train Time 50 hours - - budget 500 $ ``` shell python3 LGeM-train.py ```