--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - narad/ravdess metrics: - accuracy model-index: - name: distilhubert-finetuned-ravdess results: - task: name: Audio Classification type: audio-classification dataset: name: RAVDESS type: narad/ravdess config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.8194444444444444 --- # distilhubert-finetuned-ravdess This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the RAVDESS dataset. It achieves the following results on the evaluation set: - Loss: 0.6720 - Accuracy: 0.8194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.795 | 1.0 | 162 | 1.8129 | 0.25 | | 1.1416 | 2.0 | 324 | 1.2499 | 0.5278 | | 1.1677 | 3.0 | 486 | 0.9141 | 0.6875 | | 0.5474 | 4.0 | 648 | 0.7662 | 0.75 | | 0.4129 | 5.0 | 810 | 0.6744 | 0.7569 | | 0.2396 | 6.0 | 972 | 0.6781 | 0.7986 | | 0.0626 | 7.0 | 1134 | 0.7809 | 0.75 | | 0.1198 | 8.0 | 1296 | 0.6404 | 0.8194 | | 0.0187 | 9.0 | 1458 | 0.6750 | 0.8264 | | 0.012 | 10.0 | 1620 | 0.6720 | 0.8194 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1 - Datasets 2.19.1 - Tokenizers 0.19.1