Erik W
commited on
Commit
•
9f8075d
1
Parent(s):
4b87e54
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
model-index:
|
13 |
+
- name: swinv2-tiny-patch4-window8-256-finetuned-eurosat
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Image Classification
|
17 |
+
type: image-classification
|
18 |
+
dataset:
|
19 |
+
name: imagefolder
|
20 |
+
type: imagefolder
|
21 |
+
config: default
|
22 |
+
split: train
|
23 |
+
args: default
|
24 |
+
metrics:
|
25 |
+
- name: Accuracy
|
26 |
+
type: accuracy
|
27 |
+
value: 0.9888888888888889
|
28 |
+
- name: F1
|
29 |
+
type: f1
|
30 |
+
value: 0.9888960568775346
|
31 |
+
- name: Precision
|
32 |
+
type: precision
|
33 |
+
value: 0.9889615535194125
|
34 |
+
- name: Recall
|
35 |
+
type: recall
|
36 |
+
value: 0.9888888888888889
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# swinv2-tiny-patch4-window8-256-finetuned-eurosat
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.0383
|
47 |
+
- Accuracy: 0.9889
|
48 |
+
- F1: 0.9889
|
49 |
+
- Precision: 0.9890
|
50 |
+
- Recall: 0.9889
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 0.0001
|
70 |
+
- train_batch_size: 64
|
71 |
+
- eval_batch_size: 64
|
72 |
+
- seed: 42
|
73 |
+
- gradient_accumulation_steps: 4
|
74 |
+
- total_train_batch_size: 256
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- lr_scheduler_warmup_ratio: 0.2
|
78 |
+
- num_epochs: 5
|
79 |
+
|
80 |
+
### Training results
|
81 |
+
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
83 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
84 |
+
| 0.3514 | 1.0 | 95 | 0.1291 | 0.9563 | 0.9566 | 0.9584 | 0.9563 |
|
85 |
+
| 0.2514 | 2.0 | 190 | 0.0652 | 0.9778 | 0.9778 | 0.9780 | 0.9778 |
|
86 |
+
| 0.1703 | 3.0 | 285 | 0.0464 | 0.9841 | 0.9841 | 0.9842 | 0.9841 |
|
87 |
+
| 0.1449 | 4.0 | 380 | 0.0422 | 0.9863 | 0.9863 | 0.9864 | 0.9863 |
|
88 |
+
| 0.1303 | 5.0 | 475 | 0.0383 | 0.9889 | 0.9889 | 0.9890 | 0.9889 |
|
89 |
+
|
90 |
+
|
91 |
+
### Framework versions
|
92 |
+
|
93 |
+
- Transformers 4.22.1
|
94 |
+
- Pytorch 1.12.1+cu113
|
95 |
+
- Datasets 2.5.1
|
96 |
+
- Tokenizers 0.12.1
|