Erik W commited on
Commit
9f8075d
1 Parent(s): 4b87e54

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ - precision
11
+ - recall
12
+ model-index:
13
+ - name: swinv2-tiny-patch4-window8-256-finetuned-eurosat
14
+ results:
15
+ - task:
16
+ name: Image Classification
17
+ type: image-classification
18
+ dataset:
19
+ name: imagefolder
20
+ type: imagefolder
21
+ config: default
22
+ split: train
23
+ args: default
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.9888888888888889
28
+ - name: F1
29
+ type: f1
30
+ value: 0.9888960568775346
31
+ - name: Precision
32
+ type: precision
33
+ value: 0.9889615535194125
34
+ - name: Recall
35
+ type: recall
36
+ value: 0.9888888888888889
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # swinv2-tiny-patch4-window8-256-finetuned-eurosat
43
+
44
+ This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.0383
47
+ - Accuracy: 0.9889
48
+ - F1: 0.9889
49
+ - Precision: 0.9890
50
+ - Recall: 0.9889
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 0.0001
70
+ - train_batch_size: 64
71
+ - eval_batch_size: 64
72
+ - seed: 42
73
+ - gradient_accumulation_steps: 4
74
+ - total_train_batch_size: 256
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - lr_scheduler_warmup_ratio: 0.2
78
+ - num_epochs: 5
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
83
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
84
+ | 0.3514 | 1.0 | 95 | 0.1291 | 0.9563 | 0.9566 | 0.9584 | 0.9563 |
85
+ | 0.2514 | 2.0 | 190 | 0.0652 | 0.9778 | 0.9778 | 0.9780 | 0.9778 |
86
+ | 0.1703 | 3.0 | 285 | 0.0464 | 0.9841 | 0.9841 | 0.9842 | 0.9841 |
87
+ | 0.1449 | 4.0 | 380 | 0.0422 | 0.9863 | 0.9863 | 0.9864 | 0.9863 |
88
+ | 0.1303 | 5.0 | 475 | 0.0383 | 0.9889 | 0.9889 | 0.9890 | 0.9889 |
89
+
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.22.1
94
+ - Pytorch 1.12.1+cu113
95
+ - Datasets 2.5.1
96
+ - Tokenizers 0.12.1