--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: swinv2-tiny-patch4-window8-256-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9888888888888889 - name: F1 type: f1 value: 0.9888960568775346 - name: Precision type: precision value: 0.9889615535194125 - name: Recall type: recall value: 0.9888888888888889 --- # swinv2-tiny-patch4-window8-256-finetuned-eurosat This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0383 - Accuracy: 0.9889 - F1: 0.9889 - Precision: 0.9890 - Recall: 0.9889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3514 | 1.0 | 95 | 0.1291 | 0.9563 | 0.9566 | 0.9584 | 0.9563 | | 0.2514 | 2.0 | 190 | 0.0652 | 0.9778 | 0.9778 | 0.9780 | 0.9778 | | 0.1703 | 3.0 | 285 | 0.0464 | 0.9841 | 0.9841 | 0.9842 | 0.9841 | | 0.1449 | 4.0 | 380 | 0.0422 | 0.9863 | 0.9863 | 0.9864 | 0.9863 | | 0.1303 | 5.0 | 475 | 0.0383 | 0.9889 | 0.9889 | 0.9890 | 0.9889 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1