File size: 1,796 Bytes
6f4f599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: '[CB] bottle photo'
widget:
- text: A [CB] bottle photo with a pink label
  output:
    url: image_0.png
- text: A [CB] bottle photo with a pink label
  output:
    url: image_1.png
- text: A [CB] bottle photo with a pink label
  output:
    url: image_2.png
- text: A [CB] bottle photo with a pink label
  output:
    url: image_3.png
---

<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->


# SDXL LoRA DreamBooth - erikhsos/cbbier_06-15-images_LoRA_lr5-5_1500

<Gallery />

## Model description

These are erikhsos/cbbier_06-15-images_LoRA_lr5-5_1500 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.

The weights were trained  using [DreamBooth](https://dreambooth.github.io/).

LoRA for the text encoder was enabled: True.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.

## Trigger words

You should use [CB] bottle photo to trigger the image generation.

## Download model

Weights for this model are available in Safetensors format.

[Download](erikhsos/cbbier_06-15-images_LoRA_lr5-5_1500/tree/main) them in the Files & versions tab.



## Intended uses & limitations

#### How to use

```python
# TODO: add an example code snippet for running this diffusion pipeline
```

#### Limitations and bias

[TODO: provide examples of latent issues and potential remediations]

## Training details

[TODO: describe the data used to train the model]