ernestum commited on
Commit
07f9372
1 Parent(s): 07806df

Initial commit

Browse files
README.md CHANGED
@@ -76,3 +76,8 @@ OrderedDict([('clip_range', 0.2),
76
  ('use_sde', True),
77
  ('normalize', False)])
78
  ```
 
 
 
 
 
 
76
  ('use_sde', True),
77
  ('normalize', False)])
78
  ```
79
+
80
+ # Environment Arguments
81
+ ```python
82
+ {'render_mode': 'rgb_array'}
83
+ ```
env_kwargs.yml CHANGED
@@ -1 +1 @@
1
- {}
 
1
+ render_mode: rgb_array
ppo-Pendulum-v1.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aa88fec6c8ad62de18627fac90373e1cb1f7005da2df367889e90b851c66aa1c
3
- size 137828
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7f24b097f622e1f05f5302b9a218395628990366719ec506b9a7cb821f97659
3
+ size 137832
ppo-Pendulum-v1/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 2.1.0
 
1
+ 2.2.0a3
ppo-Pendulum-v1/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd294b67040>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd294b670d0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd294b67160>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd294b671f0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fd294b67280>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fd294b67310>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd294b673a0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd294b67430>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7fd294b674c0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd294b67550>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd294b675e0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd294b67670>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x7fd294b42ab0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbe4d5bbee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbe4d5bbf70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbe4d540040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbe4d5400d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbe4d540160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbe4d5401f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbe4d540280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbe4d540310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbe4d5403a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbe4d540430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbe4d5404c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbe4d540550>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fbe4d5b8cf0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
ppo-Pendulum-v1/system_info.txt CHANGED
@@ -1,6 +1,6 @@
1
  - OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
2
  - Python: 3.8.10
3
- - Stable-Baselines3: 2.1.0
4
  - PyTorch: 2.0.1+cu117
5
  - GPU Enabled: False
6
  - Numpy: 1.24.4
 
1
  - OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
2
  - Python: 3.8.10
3
+ - Stable-Baselines3: 2.2.0a3
4
  - PyTorch: 2.0.1+cu117
5
  - GPU Enabled: False
6
  - Numpy: 1.24.4
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc4ccb77c13e09f524899e42ab016875f30055b24e76e4f43eca6047088e5f14
3
+ size 174142
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -189.2534682, "std_reward": 66.36133815611241, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-15T13:52:49.960932"}
 
1
+ {"mean_reward": -189.2534682, "std_reward": 66.36133815611241, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-18T09:50:19.957740"}
train_eval_metrics.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f5ce2124af89a6fc975e8699dd5cfc9103572037576aa9591d9f0cb6038a2d22
3
  size 15240
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:690af8420de0d7622537e219353fd187a2691b8cf017e74df2f93166a8b7d477
3
  size 15240