ernestum commited on
Commit
bc41a8a
1 Parent(s): 24e9f1f

Initial commit

Browse files
README.md CHANGED
@@ -87,3 +87,8 @@ OrderedDict([('batch_size', 8),
87
  'norm_reward': True},
88
  'norm_reward': False})])
89
  ```
 
 
 
 
 
 
87
  'norm_reward': True},
88
  'norm_reward': False})])
89
  ```
90
+
91
+ # Environment Arguments
92
+ ```python
93
+ {'render_mode': 'rgb_array'}
94
+ ```
env_kwargs.yml CHANGED
@@ -1 +1 @@
1
- {}
 
1
+ render_mode: rgb_array
ppo-seals-Walker2d-v1.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:31a2ae976509b15151f642fb953cde575263cc2285ca60eab1e4dae094f1f7c5
3
- size 1750912
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a78cee4b17a9fa1c0da1a25464e78311bf9d37e08c920cffb1671f71330a211c
3
+ size 1750916
ppo-seals-Walker2d-v1/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 2.1.0
 
1
+ 2.2.0a3
ppo-seals-Walker2d-v1/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd5c3ffa040>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd5c3ffa0d0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd5c3ffa160>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd5c3ffa1f0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fd5c3ffa280>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fd5c3ffa310>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd5c3ffa3a0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd5c3ffa430>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7fd5c3ffa4c0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd5c3ffa550>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd5c3ffa5e0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd5c3ffa670>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x7fd5c3fd5bd0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f89b24c7ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f89b24c7f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f89b244c040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f89b244c0d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f89b244c160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f89b244c1f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f89b244c280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f89b244c310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f89b244c3a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f89b244c430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f89b244c4c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f89b244c550>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f89b24b2c90>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
ppo-seals-Walker2d-v1/system_info.txt CHANGED
@@ -1,6 +1,6 @@
1
  - OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
2
  - Python: 3.8.10
3
- - Stable-Baselines3: 2.1.0
4
  - PyTorch: 2.0.1+cu117
5
  - GPU Enabled: False
6
  - Numpy: 1.24.4
 
1
  - OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
2
  - Python: 3.8.10
3
+ - Stable-Baselines3: 2.2.0a3
4
  - PyTorch: 2.0.1+cu117
5
  - GPU Enabled: False
6
  - Numpy: 1.24.4
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b3aa9e59b54559bd3498f95f167f3b4a94747f77e071768a20db664f9cd6d77
3
+ size 1202636
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 2465.5641595, "std_reward": 272.3096340126047, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-15T13:52:08.595827"}
 
1
+ {"mean_reward": 2465.5641595, "std_reward": 272.3096340126047, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-18T09:48:30.787689"}
train_eval_metrics.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f09d715abfcf835b22820259dcdc1b9f3918b108a2557ad42b0e7ceef793e863
3
  size 30363
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcab44588463ec4a95e23978ed2629d13da0fb41e81d6505b6dd5c7b963b2743
3
  size 30363
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:452c69eeefd125d9badfbe6c4274e69d526a22c3e1bfb60910997645b5237ae0
3
- size 1967
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ed5ce67b6e996e4e1f1114f207f3f7e444c4b9b8fbab4cc1394f98263143892
3
+ size 1978