ernestum commited on
Commit
6ca19b3
1 Parent(s): b1331bd

Initial Commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - seals/CartPole-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 500.00 +/- 0.00
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: seals/CartPole-v0
20
+ type: seals/CartPole-v0
21
+ ---
22
+
23
+ # **PPO** Agent playing **seals/CartPole-v0**
24
+ This is a trained model of a **PPO** agent playing **seals/CartPole-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo ppo --env seals/CartPole-v0 -orga ernestumorga -f logs/
41
+ python enjoy.py --algo ppo --env seals/CartPole-v0 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo ppo --env seals/CartPole-v0 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo ppo --env seals/CartPole-v0 -f logs/ -orga ernestumorga
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('batch_size', 256),
54
+ ('clip_range', 0.4),
55
+ ('ent_coef', 0.008508727919228772),
56
+ ('gae_lambda', 0.9),
57
+ ('gamma', 0.9999),
58
+ ('learning_rate', 0.0012403278189645594),
59
+ ('max_grad_norm', 0.8),
60
+ ('n_envs', 8),
61
+ ('n_epochs', 10),
62
+ ('n_steps', 512),
63
+ ('n_timesteps', 100000.0),
64
+ ('policy', 'MlpPolicy'),
65
+ ('policy_kwargs',
66
+ 'dict(activation_fn=nn.ReLU, net_arch=[dict(pi=[64, 64], vf=[64, '
67
+ '64])])'),
68
+ ('vf_coef', 0.489343896591493),
69
+ ('normalize', False)])
70
+ ```
args.yml ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - device
5
+ - cpu
6
+ - - env
7
+ - seals/CartPole-v0
8
+ - - env_kwargs
9
+ - null
10
+ - - eval_episodes
11
+ - 5
12
+ - - eval_freq
13
+ - 25000
14
+ - - gym_packages
15
+ - []
16
+ - - hyperparams
17
+ - null
18
+ - - log_folder
19
+ - seals_experts
20
+ - - log_interval
21
+ - -1
22
+ - - n_eval_envs
23
+ - 1
24
+ - - n_evaluations
25
+ - null
26
+ - - n_jobs
27
+ - 1
28
+ - - n_startup_trials
29
+ - 10
30
+ - - n_timesteps
31
+ - -1
32
+ - - n_trials
33
+ - 500
34
+ - - no_optim_plots
35
+ - false
36
+ - - num_threads
37
+ - 4
38
+ - - optimization_log_path
39
+ - null
40
+ - - optimize_hyperparameters
41
+ - false
42
+ - - pruner
43
+ - median
44
+ - - sampler
45
+ - tpe
46
+ - - save_freq
47
+ - -1
48
+ - - save_replay_buffer
49
+ - false
50
+ - - seed
51
+ - 3866955406
52
+ - - storage
53
+ - null
54
+ - - study_name
55
+ - null
56
+ - - tensorboard_log
57
+ - ''
58
+ - - total_n_trials
59
+ - null
60
+ - - track
61
+ - false
62
+ - - trained_agent
63
+ - ''
64
+ - - truncate_last_trajectory
65
+ - true
66
+ - - uuid
67
+ - false
68
+ - - vec_env
69
+ - dummy
70
+ - - verbose
71
+ - 1
72
+ - - wandb_entity
73
+ - null
74
+ - - wandb_project_name
75
+ - sb3
config.yml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - clip_range
5
+ - 0.4
6
+ - - ent_coef
7
+ - 0.008508727919228772
8
+ - - gae_lambda
9
+ - 0.9
10
+ - - gamma
11
+ - 0.9999
12
+ - - learning_rate
13
+ - 0.0012403278189645594
14
+ - - max_grad_norm
15
+ - 0.8
16
+ - - n_envs
17
+ - 8
18
+ - - n_epochs
19
+ - 10
20
+ - - n_steps
21
+ - 512
22
+ - - n_timesteps
23
+ - 100000.0
24
+ - - policy
25
+ - MlpPolicy
26
+ - - policy_kwargs
27
+ - dict(activation_fn=nn.ReLU, net_arch=[dict(pi=[64, 64], vf=[64, 64])])
28
+ - - vf_coef
29
+ - 0.489343896591493
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-seals-CartPole-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0430bbef17d9463be60c35cc6cc619a3a6dbc7db81e1d9469b484a1d2c5b156
3
+ size 138640
ppo-seals-CartPole-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.4.1a0
ppo-seals-CartPole-v0/data ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc420aef280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc420aef310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc420aef3a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc420aef430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc420aef4c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc420aef550>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc420aef5e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc420aef670>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc420aef700>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc420aef790>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc420aef820>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fc420b67870>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVaAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoS0BLQGWMAnZmlF2UKEtAS0BldWF1Lg==",
25
+ "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
26
+ "net_arch": [
27
+ {
28
+ "pi": [
29
+ 64,
30
+ 64
31
+ ],
32
+ "vf": [
33
+ 64,
34
+ 64
35
+ ]
36
+ }
37
+ ]
38
+ },
39
+ "observation_space": {
40
+ ":type:": "<class 'gym.spaces.box.Box'>",
41
+ ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAD//3////9//9sPScD//3//lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAP//f3///39/2w9JQP//f3+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
42
+ "dtype": "float32",
43
+ "_shape": [
44
+ 4
45
+ ],
46
+ "low": "[-3.4028235e+38 -3.4028235e+38 -3.1415927e+00 -3.4028235e+38]",
47
+ "high": "[3.4028235e+38 3.4028235e+38 3.1415927e+00 3.4028235e+38]",
48
+ "bounded_below": "[ True True True True]",
49
+ "bounded_above": "[ True True True True]",
50
+ "_np_random": null
51
+ },
52
+ "action_space": {
53
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
54
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
55
+ "n": 2,
56
+ "_shape": [],
57
+ "dtype": "int64",
58
+ "_np_random": "RandomState(MT19937)"
59
+ },
60
+ "n_envs": 8,
61
+ "num_timesteps": 102400,
62
+ "_total_timesteps": 100000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": 0,
65
+ "action_noise": null,
66
+ "start_time": 1651240811.8226469,
67
+ "learning_rate": {
68
+ ":type:": "<class 'function'>",
69
+ ":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9UUk/azSgzhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
70
+ },
71
+ "tensorboard_log": null,
72
+ "lr_schedule": {
73
+ ":type:": "<class 'function'>",
74
+ ":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9UUk/azSgzhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
75
+ },
76
+ "_last_obs": null,
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
80
+ },
81
+ "_last_original_obs": null,
82
+ "_episode_num": 0,
83
+ "use_sde": false,
84
+ "sde_sample_freq": -1,
85
+ "_current_progress_remaining": -0.02400000000000002,
86
+ "ep_info_buffer": {
87
+ ":type:": "<class 'collections.deque'>",
88
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAJVd0JWvKU3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCVWtlqagEl1fZQoaAZHQH9AAAAAAABoB030AWgIR0AlVe0G/vfCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJVUj1PFefXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCbGpZOi35N1fZQoaAZHQH9AAAAAAABoB030AWgIR0AmxhF3IMjNdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJsVzIV/MGHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCbE1IiC8OF1fZQoaAZHQH9AAAAAAABoB030AWgIR0Amw/etSydGdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJsM6BAfMfXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCbCcLBsQ/Z1fZQoaAZHQH9AAAAAAABoB030AWgIR0AmwafBeokzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKBRMN+b3GnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCgTujRD1Gt1fZQoaAZHQH9AAAAAAABoB030AWgIR0AoExvegte2dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKBJ9iMHbAXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCgRoM8YAKh1fZQoaAZHQH9AAAAAAABoB030AWgIR0AoEONHYpUhdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKBAaNuLrHHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCgPUUfxMFl1fZQoaAZHQH9AAAAAAABoB030AWgIR0ApZaURnOB2dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKWUONHYpUnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQClkbzbvgFZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0ApY9AX2ugZdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKWLy1/lQuXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCliNOuaF251fZQoaAZHQH9AAAAAAABoB030AWgIR0ApYWszVMEidX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKWChvitJWnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCqzKNhmXgN1fZQoaAZHQH9AAAAAAABoB030AWgIR0AqspmVZ9uxdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKrH8KohpxnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCqxXhfjS5R1fZQoaAZHQH9AAAAAAABoB030AWgIR0AqsIHkcS5BdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKq/GdZq20HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCqu/gzguRN1fZQoaAZHQH9AAAAAAABoB030AWgIR0AqrjZL7GeddX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALAVea8YhuHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCwEzXSSeRR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AsBC9h7VridX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALAOQ6p5u63V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCwCtA9mpVF1fZQoaAZHQH9AAAAAAABoB030AWgIR0AsAfapPykLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALAEtmL9/BnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCwAZMtbs4V1fZQoaAZHQH9AAAAAAABoB030AWgIR0AuwE6DGtITdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALr+4TbnHN3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC6/GbTc6/91fZQoaAZHQH9AAAAAAABoB030AWgIR0AuvntfG+9KdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALr2eg+Qlr3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC684NqgyuZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0AuvBfKISDidX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALrtOuaF23nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDAW5Fw1ivx1fZQoaAZHQH9AAAAAAABoB030AWgIR0AwFphnanJldX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMBZI+W4Vh3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDAV+YtxuKp1fZQoaAZHQH9AAAAAAABoB030AWgIR0AwFYr8R+SbdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMBUsFt8/lnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDAUx0uDjBF1fZQoaAZHQH9AAAAAAABoB030AWgIR0AwFGKhtcfOdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMMCFsYVIqnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDDAOkLx7Rh1fZQoaAZHQH9AAAAAAABoB030AWgIR0Awv+r2g398dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAML+bd8Aq/nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDC/LMcIZ651fZQoaAZHQH9AAAAAAABoB030AWgIR0Awvs3Q2MsIdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAML5pBX0Xg3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDC+BEroW591fZQoaAZHQH9AAAAAAABoB030AWgIR0AxcYNAkcCHdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMXE5ZKWcBnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDFw6vJRwZR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AxcJvHcUM5dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMXAtapxWDHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDFvzpX6qKh1fZQoaAZHQH9AAAAAAABoB030AWgIR0Axb2n889wFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMW8FlkH2RXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDIxpEhJRO11fZQoaAZHQH9AAAAAAABoB030AWgIR0AyMVkMCtA+dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMjEJv5xionV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDIwulGgBcR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AyMEvTPSlWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMi/s3Q2MsHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDIviBGx2St1fZQoaAZHQH9AAAAAAABoB030AWgIR0AyLyNGViWndX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMuDsdDIBBHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDLgoH9m6Gx1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ay4FEiMYMwdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMuABo24usnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDLfkxREWqN1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ay3zQeFL39dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMt7PY4ACGXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDLeaqjrRjV1fZQoaAZHQH9AAAAAAABoB030AWgIR0Azkd3B55Z9dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM5GSIP9UCXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDORQrMC9yt1fZQoaAZHQH9AAAAAAABoB030AWgIR0AzkPN3W4EwdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM5CE12q1gHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDOQJeE7GNt1fZQoaAZHQH9AAAAAAABoB030AWgIR0Azj8EV32VWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM49cW0qpcXVlLg=="
89
+ },
90
+ "ep_success_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
93
+ },
94
+ "_n_updates": 250,
95
+ "n_steps": 512,
96
+ "gamma": 0.9999,
97
+ "gae_lambda": 0.9,
98
+ "ent_coef": 0.008508727919228772,
99
+ "vf_coef": 0.489343896591493,
100
+ "max_grad_norm": 0.8,
101
+ "batch_size": 256,
102
+ "n_epochs": 10,
103
+ "clip_range": {
104
+ ":type:": "<class 'function'>",
105
+ ":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/ZmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
106
+ },
107
+ "clip_range_vf": null,
108
+ "target_kl": null,
109
+ "normalize_advantage": true
110
+ }
ppo-seals-CartPole-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d017cd4add2514e12384da546ec6ed5303da8dd59711d3d8fc5c2b28a4575c3
3
+ size 79453
ppo-seals-CartPole-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b7f8bd78b461cde84c74f83d80b296a12c5a9206435029ce843acec812a023f
3
+ size 40513
ppo-seals-CartPole-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-seals-CartPole-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-109-generic-x86_64-with-glibc2.29 #123-Ubuntu SMP Fri Apr 8 09:10:54 UTC 2022
2
+ Python: 3.8.10
3
+ Stable-Baselines3: 1.4.1a0
4
+ PyTorch: 1.11.0+cu102
5
+ GPU Enabled: False
6
+ Numpy: 1.22.3
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c1428837404497e463bb6328186283ec09068bce8601f5d59ca3f46bbde225b
3
+ size 55885
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-28T14:06:50.696510"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23e9479340a3b7324125e6ab6b6e913dcd48421d53b468708ab3fbcf8c814931
3
+ size 6634