ernestum commited on
Commit
303b1df
1 Parent(s): 676cdf1

Initial commit

Browse files
ppo-seals-Humanoid-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6076d3571b3de34decf87b84cdf94d7a5dfcde89620771c0b0ac65de636ce41
3
+ size 4016823
ppo-seals-Humanoid-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
ppo-seals-Humanoid-v0/data ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efd3f531670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd3f531700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd3f531790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd3f531820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efd3f5318b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efd3f531940>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd3f5319d0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efd3f531a60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd3f531af0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd3f531b80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd3f531c10>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7efd3f52e240>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVbAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoTQABTQABZYwCdmaUXZQoTQABTQABZXVhdS4=",
25
+ "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
26
+ "net_arch": [
27
+ {
28
+ "pi": [
29
+ 256,
30
+ 256
31
+ ],
32
+ "vf": [
33
+ 256,
34
+ 256
35
+ ]
36
+ }
37
+ ]
38
+ },
39
+ "observation_space": {
40
+ ":type:": "<class 'gym.spaces.box.Box'>",
41
+ ":serialized:": "gAWV6BsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRNegGFlIwDbG93lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoltALAAAAAAAAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKTXoBhZSMAUOUdJRSlIwEaGlnaJRoEiiW0AsAAAAAAAAAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApNegGFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWegEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJNegGFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWegEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFNegGFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
42
+ "dtype": "float64",
43
+ "_shape": [
44
+ 378
45
+ ],
46
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
47
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
48
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False]",
49
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False]",
50
+ "_np_random": null
51
+ },
52
+ "action_space": {
53
+ ":type:": "<class 'gym.spaces.box.Box'>",
54
+ ":serialized:": "gAWVgQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWRAAAAAAAAADNzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvpRoCksRhZSMAUOUdJRSlIwEaGlnaJRoEiiWRAAAAAAAAADNzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPpRoCksRhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolhEAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLEYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYRAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBlGghSxGFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
55
+ "dtype": "float32",
56
+ "_shape": [
57
+ 17
58
+ ],
59
+ "low": "[-0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4\n -0.4 -0.4 -0.4]",
60
+ "high": "[0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4]",
61
+ "bounded_below": "[ True True True True True True True True True True True True\n True True True True True]",
62
+ "bounded_above": "[ True True True True True True True True True True True True\n True True True True True]",
63
+ "_np_random": "RandomState(MT19937)"
64
+ },
65
+ "n_envs": 1,
66
+ "num_timesteps": 10000384,
67
+ "_total_timesteps": 10000000,
68
+ "_num_timesteps_at_start": 0,
69
+ "seed": 0,
70
+ "action_noise": null,
71
+ "start_time": 1651240813.3220909,
72
+ "learning_rate": {
73
+ ":type:": "<class 'function'>",
74
+ ":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz71S7dcVqElhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
75
+ },
76
+ "tensorboard_log": null,
77
+ "lr_schedule": {
78
+ ":type:": "<class 'function'>",
79
+ ":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz71S7dcVqElhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
80
+ },
81
+ "_last_obs": null,
82
+ "_last_episode_starts": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
85
+ },
86
+ "_last_original_obs": {
87
+ ":type:": "<class 'numpy.ndarray'>",
88
+ ":serialized:": "gAWVRgwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbQCwAAAAAAAHPSoSJbtIO/4KLlFuizUz8jg4dWSYz2P0L+LKO7/+8/O1Rnb3Q8dj8n1eRJFFlyP02wBoorNXC/wdfsoqGxgj+2m8lmbl55PxD983bNO2W/ALhepnvWgr/AXWXIgOsjP2DRBjFwcVO/VmHuSjFkez9L8LFEhMWAP2riGAaaZ3s/wz20V8MghD+7Jv9TDk5wv0hFd9g69mS/OGOZIohabL/znlbnTm+BP6h4mwni92o/8p41dGlTgb8/4OXzvY+Av+TiRiMDDnG/FWHc8ZRtgD8SjYCk5TF4v/YorBcMHHi/ACZYunfDZL9RP/zWkoaBv1TeWZCKUGI/eo++APDPYr8qW/4f6pd9P8IVJQzZZn0/zfjb4Yj4cr+UKhlLVShrP4LdscCCAX8/qRmeXZLEe7+Kwj6uc0l9vwbvZpGyEH8/gGOLzEMNZ7/QygC9EZB8v83aUv3Af3G/Ov513Ot7ez9f7GonMz52v0fvKJK/IIM/I+JZBnGGgD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwgqgGR2AFA4Nr0EEPDAUBC45fOiJ+hP0DVwcCPHDW/IYG715CZpT9krU4+3AiMP7wyOiyH5be/ZK1cWLR7mb/itj3Y2JsQQMOO3ofnpCBAmeZjV3lytj9PxPPUCcK1P6dP1GDV/4A/LflGo11Z9D7pwKPebBmCP6Wh6LgPQie/vorlJVvGpr9ZWkmC+bJGP/hsrzWV4tk//T2EXThJAEB7e088FrimP2Da7psWSaU/iobCK5EBqT94gtG9zQNAP3OKxrJmt4E/ETIB2hWJP7+PbTvt0VzQv+KYOKK0I4Y/p7Yu3QdZyT8cGW4GQWkXQNjVfrJDbs8/POf04zfHyj9ApBOsoqWpP648R8foZYW/CZDYnP2/lL/q12KFQqqyv6FslhRNzby/fzlv8Bbs2r8HHjJy76bpv3vwbGsrGhJAAUgGQif+6z8mLU1djmTrP2csQSkgFJo/vJkENivAeL9UgUUiSZ2jvw8AbleQq8C/Bnu+zYGEsb/5jpU9eMHNv20otvnBl/e/b7tbPFkPBUClMoYPPp/wPxczcRZla/A/GnLYnRJzkz/kAw2Ssoxwv4bUWy0lxaG/2/injw1uvr9ehFBdqWCnv4sYNn8hBMS/tTrmXwZ+9b+7ssy+Okb8P7jaayBQjs8/uVDL0qB/yj8+KTIJ+MqrP8+QWSw6Q4g/ONI0z97tlr95ig2NKFezPxesw8DnRL+/FPSmMaUo3D9j9Hzpn2jpv3vwbGsrGhJAd968WFXj6z8+qCro/ETrP8qCKiFMWZ0/kiDSJY4AgT+6Fg32dP2pv0sXBUPEXME/nfwmlBkIt7/24jI6zxfPP6Ve823mhPe/b7tbPFkPBUDA/+a+iJDwPwuvZsiCXfA/N3bCDN4mlj+LADRViaB5P0NQlulKUaq/j+aXvryqvz/4VhtNH1qxvyUvhfwK4cQ/YhqjBA1x9b+7ssy+Okb8P/FAEn0rgto/yUo2jpxr1D9amzQIOZC+P257s5AYQaA/GSoXkjoYpr/9y6JMTPLFPwrN1Toj37s/6AcMWh7a2b9Mw1Gz6TLmP2z8deREgfk/ZZCb8udF1D9fYo6YvpPVP5Vlp4O1H8Y/jCtW1UPQsz+I4hLNymjDv/Et9zDpK8A/6YGh5q5E1T8I8GsotMvSv2cboFOiBeE/w96z2Gks8z+UHT0NcrTaP5xtyL5sDNU/a9iLf6aYvT/+f95nugehv8hTZ/XLWqi/wUtjP4Wwxb9LTiCNmAy+PxzNtGI7Ltk/IQDBsDqD5j9s/HXkRIH5P+c8nWUQVdQ/ABnOFR1U1j9IZf7BYAfGP0qT0G6wb7O/c1/ii5QwxL/vbxGGpVy/vzZtKFGy2dU/VRxIxaz80T/G0FDo7EThP8Pes9hpLPM/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4O6fGcWAeL8OBBtya55jv0mOGfy6eIG/fu+nRPvuaL8covrwEE11PyGW+s0WK3i/ztrLfXByeL96Y1T7flBzv3DMrSCG43m/GzV7/4PtY78d/Lee0YF1P83pRyys93e/wCUiNR2VVD+SWOMnFUdzv+LPJSFJGXq/gL1OGCXwY7/lmVtAXHV5P+Xnq6XO/3e/AEncF00ygT9OFGIBX7hWv2ul9BwopYa/ujNhZSD7X79yqbgyysp4P93F6EacdnW/CWACm9w3gT8itcHSy1eCv35WDLR/oYa/Yt3qJB4YdL9NcchnpMZ4P3c0KzNBpnS/CWACm9w3gT8itcHSy1eCv35WDLR/oYa/Yt3qJB4YdL9NcchnpMZ4P3c0KzNBpnS/y+O9wxmlgD9UybzUf6NnPx6X67q37kc/gwQ/SodNW7+hE5XxRAF6P4RFJ/fin3u/mDmjiSOtgD/CWkqaVlh3P304u3Kh70c/gsx0a1/KQr8NwIJEB/t5P6yLjQi5+3u/mDmjiSOtgD/CWkqaVlh3P304u3Kh70c/gsx0a1/KQr8NwIJEB/t5P6yLjQi5+3u/HpSBmsIAiL9mKTeuqlphv71Iz41WZI2/tDc1AUvYYb/QOhdj2NZhPyvm7JIfQHy/999uYX8DiL/VcbqG2Ed8vzzPcomjwoO/QLC/SAtnYr8Us0nnw9lWPyOcT8ivg3+/oYlO6dQkhb9immK3ZjF6PwwBRe4GWXC/Lk9iN98ZfL9zEx13hFxoP1arEPmWdnW/pn7AmElPhb+wybwyLCRJPy7YA7f4A4S/iAGS+eFrfL8yuauQkDRwP8HOzB02YHm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAU16AYaUjAFDlHSUUpQu"
89
+ },
90
+ "_episode_num": 0,
91
+ "use_sde": false,
92
+ "sde_sample_freq": -1,
93
+ "_current_progress_remaining": -3.8399999999993994e-05,
94
+ "ep_info_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuHcN+rpppUCUhpRSlIwBbJRN6AOMAXSUR0DXv7jyWiUQdX2UKGgGaAloD0MILsbAOo4up0CUhpRSlGgVTegDaBZHQNfAFkdeY2N1fZQoaAZoCWgPQwgiNIKNk0SmQJSGlFKUaBVN6ANoFkdA18DeR2r4nHV9lChoBmgJaA9DCNKPhlNmC6ZAlIaUUpRoFU3oA2gWR0DXwTckka/AdX2UKGgGaAloD0MIW1653mZXpkCUhpRSlGgVTegDaBZHQNfCB6K+BYp1fZQoaAZoCWgPQwhiTWVRSNSmQJSGlFKUaBVN6ANoFkdA18JcOMERrnV9lChoBmgJaA9DCLOxEvOEF6ZAlIaUUpRoFU3oA2gWR0DXwyaS9ugpdX2UKGgGaAloD0MIdy/3yQF8pkCUhpRSlGgVTegDaBZHQNfDevRE4Nt1fZQoaAZoCWgPQwjRsu4f+0+hQJSGlFKUaBVN6ANoFkdA18QtRQ79ynV9lChoBmgJaA9DCNZvJqZTWqVAlIaUUpRoFU3oA2gWR0DXxIGj8DSxdX2UKGgGaAloD0MIgCctXKZXpkCUhpRSlGgVTegDaBZHQNfFTgMH8j11fZQoaAZoCWgPQwj3WPrQvYulQJSGlFKUaBVN6ANoFkdA18WlvYvnKXV9lChoBmgJaA9DCERRoE9sc6VAlIaUUpRoFU3oA2gWR0DXxmNcMVk+dX2UKGgGaAloD0MIpDUGnbj+pECUhpRSlGgVTegDaBZHQNfGvk3bVSZ1fZQoaAZoCWgPQwgRVfgzxF+lQJSGlFKUaBVN6ANoFkdA18d4pKSPl3V9lChoBmgJaA9DCJYEqKlVAKRAlIaUUpRoFU3oA2gWR0DXx8ywcHW0dX2UKGgGaAloD0MI323eOGESoECUhpRSlGgVTegDaBZHQNfIiiI55qx1fZQoaAZoCWgPQwiAme/g926lQJSGlFKUaBVN6ANoFkdA18jhQhwEQ3V9lChoBmgJaA9DCMJtbeEhPKNAlIaUUpRoFU3oA2gWR0DXyZp6jWTYdX2UKGgGaAloD0MI641aYaozpkCUhpRSlGgVTegDaBZHQNfJ8R2nsLR1fZQoaAZoCWgPQwilFHR7aZulQJSGlFKUaBVN6ANoFkdA18qt28IzFnV9lChoBmgJaA9DCEUQ5+E8TaZAlIaUUpRoFU3oA2gWR0DXywVVktmMdX2UKGgGaAloD0MIoP8evDbWpUCUhpRSlGgVTegDaBZHQNfLvZa3Zwp1fZQoaAZoCWgPQwj3BInthimnQJSGlFKUaBVN6ANoFkdA18wSkt29tnV9lChoBmgJaA9DCIXMlUG1aqVAlIaUUpRoFU3oA2gWR0DXzMTnFHawdX2UKGgGaAloD0MIayxhbbzbpUCUhpRSlGgVTegDaBZHQNfOk3skY411fZQoaAZoCWgPQwi7KlCLySGmQJSGlFKUaBVN6ANoFkdA189UfDUExXV9lChoBmgJaA9DCMI1d/Sv+5xAlIaUUpRoFU3oA2gWR0DXz6oMTewcdX2UKGgGaAloD0MIxv1HprNepUCUhpRSlGgVTegDaBZHQNfQZ0kfLcN1fZQoaAZoCWgPQwhyUwPNxy+mQJSGlFKUaBVN6ANoFkdA19C/MVk+YHV9lChoBmgJaA9DCGX7kLeskKVAlIaUUpRoFU3oA2gWR0DX0XPv1DjSdX2UKGgGaAloD0MIh913DGdlpkCUhpRSlGgVTegDaBZHQNfRx18gIQh1fZQoaAZoCWgPQwjG/Uemu2mkQJSGlFKUaBVN6ANoFkdA19KIN4JNTXV9lChoBmgJaA9DCJFDxM3h4aVAlIaUUpRoFU3oA2gWR0DX0tsauOjqdX2UKGgGaAloD0MIWFaalHrppkCUhpRSlGgVTegDaBZHQNfTnxTS9dx1fZQoaAZoCWgPQwiR09fzzZyiQJSGlFKUaBVN6ANoFkdA19P0P6KtP3V9lChoBmgJaA9DCDULtDssHKZAlIaUUpRoFU3oA2gWR0DX1L/cvduYdX2UKGgGaAloD0MIpu1fWQFbpECUhpRSlGgVTegDaBZHQNfVHFrAP/d1fZQoaAZoCWgPQwicps8OyEKeQJSGlFKUaBVN6ANoFkdA19XfA57w8XV9lChoBmgJaA9DCCF1O/tKIqZAlIaUUpRoFU3oA2gWR0DX1jPgNwzddX2UKGgGaAloD0MIwcWKGiRWpkCUhpRSlGgVTegDaBZHQNfW8W6Gxlh1fZQoaAZoCWgPQwg2rn/Xv46mQJSGlFKUaBVN6ANoFkdA19dHNoakynV9lChoBmgJaA9DCHMqGQCK9pRAlIaUUpRoFU3oA2gWR0DX16JgogFHdX2UKGgGaAloD0MI0vwxrT0HpECUhpRSlGgVTegDaBZHQNfYdApazNV1fZQoaAZoCWgPQwgEIVnAlCSkQJSGlFKUaBVN6ANoFkdA19jZxqfvnnV9lChoBmgJaA9DCMKJ6NfW26VAlIaUUpRoFU3oA2gWR0DX2ZvJuEVWdX2UKGgGaAloD0MI9dbAVsm7pkCUhpRSlGgVTegDaBZHQNfZ75eJHiF1fZQoaAZoCWgPQwjPaRZoF3imQJSGlFKUaBVN6ANoFkdA19qwGaQV9HV9lChoBmgJaA9DCIMvTKYCtaZAlIaUUpRoFU3oA2gWR0DX2wduyeI3dX2UKGgGaAloD0MIHv6arJmhpUCUhpRSlGgVTegDaBZHQNfb02S6lLx1fZQoaAZoCWgPQwhFuMmo0mqjQJSGlFKUaBVN6ANoFkdA1920ZrHlwXV9lChoBmgJaA9DCK4P6416bIBAlIaUUpRoFU3oA2gWR0DX3nkSdvsJdX2UKGgGaAloD0MIcHztmd0VpkCUhpRSlGgVTegDaBZHQNfe0pmAbyZ1fZQoaAZoCWgPQwgE4nX9QqylQJSGlFKUaBVN6ANoFkdA19+K1VYISnV9lChoBmgJaA9DCA3+fjETOqZAlIaUUpRoFU3oA2gWR0DX39//LkjpdX2UKGgGaAloD0MInj9tVC9IpUCUhpRSlGgVTegDaBZHQNfgnowM6R11fZQoaAZoCWgPQwjWU6uvZnOlQJSGlFKUaBVN6ANoFkdA1+Dy6uW8iHV9lChoBmgJaA9DCMsTCDulTKVAlIaUUpRoFU3oA2gWR0DX4aPZCfHxdX2UKGgGaAloD0MI4o+izozApUCUhpRSlGgVTegDaBZHQNfh98wYced1fZQoaAZoCWgPQwgeqFMe9R6iQJSGlFKUaBVN6ANoFkdA1+KyPEsJ6nV9lChoBmgJaA9DCB11dFyNrZdAlIaUUpRoFU3oA2gWR0DX4xCdat9ydX2UKGgGaAloD0MI88mK4So2nUCUhpRSlGgVTegDaBZHQNfjz7Qswtd1fZQoaAZoCWgPQwg2PpP927qkQJSGlFKUaBVN6ANoFkdA1+QlXMhX83V9lChoBmgJaA9DCIF6M2qWbKVAlIaUUpRoFU3oA2gWR0DX5OQCmuTzdX2UKGgGaAloD0MI6Zyf4vC7pUCUhpRSlGgVTegDaBZHQNflOLDZUUB1fZQoaAZoCWgPQwhZF7fRICKiQJSGlFKUaBVN6ANoFkdA1+Xz6bvw3HV9lChoBmgJaA9DCOiHEcJ7x6RAlIaUUpRoFU3oA2gWR0DX5kcL0BfbdX2UKGgGaAloD0MIILjKE5jypkCUhpRSlGgVTegDaBZHQNfnAKveP7x1fZQoaAZoCWgPQwiI2jaMaiemQJSGlFKUaBVN6ANoFkdA1+dUOaOPvXV9lChoBmgJaA9DCPq19dNPS5dAlIaUUpRoFU3oA2gWR0DX6B3yTY/WdX2UKGgGaAloD0MIXATG+maapUCUhpRSlGgVTegDaBZHQNfocYIfKZF1fZQoaAZoCWgPQwga3qzBy/mkQJSGlFKUaBVN6ANoFkdA1+krSOinHnV9lChoBmgJaA9DCOdz7nYlg6ZAlIaUUpRoFU3oA2gWR0DX6X1e4TbndX2UKGgGaAloD0MIVK2FWWB5pECUhpRSlGgVTegDaBZHQNfqOASi/PB1fZQoaAZoCWgPQwiRQln4ciKhQJSGlFKUaBVN6ANoFkdA1+qNMZP2wnV9lChoBmgJaA9DCK8jDtkQaKZAlIaUUpRoFU3oA2gWR0DX7MSyhSLqdX2UKGgGaAloD0MIU0Da/zCspkCUhpRSlGgVTegDaBZHQNftGT6BRQ91fZQoaAZoCWgPQwhZpl8iblelQJSGlFKUaBVN6ANoFkdA1+3bf6oES3V9lChoBmgJaA9DCAGmDBxQ4ZBAlIaUUpRoFU3oA2gWR0DX7jSbvw3HdX2UKGgGaAloD0MI6LzGLoEDp0CUhpRSlGgVTegDaBZHQNfu+LwSamZ1fZQoaAZoCWgPQwgTZW8pb5ejQJSGlFKUaBVN6ANoFkdA1+9P5hScb3V9lChoBmgJaA9DCPxR1JnTg6VAlIaUUpRoFU3oA2gWR0DX8Aj0Cih4dX2UKGgGaAloD0MIzqW4qnxplkCUhpRSlGgVTegDaBZHQNfwXN1hb4d1fZQoaAZoCWgPQwitFW2OA+ilQJSGlFKUaBVN6ANoFkdA1/CxHN5dGHV9lChoBmgJaA9DCIOj5NUZh6VAlIaUUpRoFU3oA2gWR0DX8XhPDYRNdX2UKGgGaAloD0MICoUIOOQrp0CUhpRSlGgVTegDaBZHQNfx0D9XLeR1fZQoaAZoCWgPQwjpKt1d76ulQJSGlFKUaBVN6ANoFkdA1/KQxffGdnV9lChoBmgJaA9DCEoKLIB5YaZAlIaUUpRoFU3oA2gWR0DX8uhY6nzhdX2UKGgGaAloD0MIb2OzI3WCpECUhpRSlGgVTegDaBZHQNfznBwl0HR1fZQoaAZoCWgPQwgRHm0ccRt5QJSGlFKUaBVN6ANoFkdA1/P0ScLBsXV9lChoBmgJaA9DCF4SZ0U8saRAlIaUUpRoFU3oA2gWR0DX9LMGzKLbdX2UKGgGaAloD0MIoKhsWPurpUCUhpRSlGgVTegDaBZHQNf1Bz6SDAd1fZQoaAZoCWgPQwi0Vx8PrSumQJSGlFKUaBVN6ANoFkdA1/XKwYcebXV9lChoBmgJaA9DCEUSvYz60KZAlIaUUpRoFU3oA2gWR0DX9icSwnpjdX2UKGgGaAloD0MIya1Jt80BpkCUhpRSlGgVTegDaBZHQNf25+zY2891fZQoaAZoCWgPQwgAAtaqvT+mQJSGlFKUaBVN6ANoFkdA1/c9NWluWXV9lChoBmgJaA9DCAIQd/VSs6dAlIaUUpRoFU3oA2gWR0DX9/wKG+K1dX2UKGgGaAloD0MICMkCJlBdp0CUhpRSlGgVTegDaBZHQNf4VXFo+Oh1fZQoaAZoCWgPQwjK4Ch5pQ+lQJSGlFKUaBVN6ANoFkdA1/kNTho/RnV9lChoBmgJaA9DCCJt40/MjqZAlIaUUpRoFU3oA2gWR0DX+Wu7cwg1dWUu"
97
+ },
98
+ "ep_success_buffer": {
99
+ ":type:": "<class 'collections.deque'>",
100
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
101
+ },
102
+ "_n_updates": 97660,
103
+ "n_steps": 2048,
104
+ "gamma": 0.999,
105
+ "gae_lambda": 0.92,
106
+ "ent_coef": 2.0745206045994986e-05,
107
+ "vf_coef": 0.819262464558427,
108
+ "max_grad_norm": 0.5,
109
+ "batch_size": 256,
110
+ "n_epochs": 20,
111
+ "clip_range": {
112
+ ":type:": "<class 'function'>",
113
+ ":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
114
+ },
115
+ "clip_range_vf": null,
116
+ "normalize_advantage": true,
117
+ "target_kl": null
118
+ }
ppo-seals-Humanoid-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbb1ca1f1330d0576547352df83500c0a8e52c2e70ae23efd93038e05fc6e917
3
+ size 2649047
ppo-seals-Humanoid-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acc136852b4c1bafb6146dc993a3788809518c31de2b018461681e9ef4fcb4db
3
+ size 1325374
ppo-seals-Humanoid-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-seals-Humanoid-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-121-generic-x86_64-with-glibc2.29 #137-Ubuntu SMP Wed Jun 15 13:33:07 UTC 2022
2
+ Python: 3.8.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0+cu102
5
+ GPU Enabled: False
6
+ Numpy: 1.22.3
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4cde359429f240e8f9997e5051874dbaf6156c32e6bc87ca6a8d2a23dd33499
3
+ size 1698525
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -43.691728499999996, "std_reward": 155.83102985637362, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-30T14:02:24.178138"}
 
1
+ {"mean_reward": -43.691728499999996, "std_reward": 155.83102985637362, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-11T14:35:12.593137"}