Initial Commit
Browse files- .gitattributes +2 -0
- README.md +71 -0
- args.yml +75 -0
- config.yml +31 -0
- env_kwargs.yml +1 -0
- ppo-seals/Walker2d-v0.zip +3 -0
- ppo-seals/Walker2d-v0/_stable_baselines3_version +1 -0
- ppo-seals/Walker2d-v0/data +118 -0
- ppo-seals/Walker2d-v0/policy.optimizer.pth +3 -0
- ppo-seals/Walker2d-v0/policy.pth +3 -0
- ppo-seals/Walker2d-v0/pytorch_variables.pth +3 -0
- ppo-seals/Walker2d-v0/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
29 |
+
vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- seals/Walker2d-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1429.13 +/- 411.75
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: seals/Walker2d-v0
|
20 |
+
type: seals/Walker2d-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **seals/Walker2d-v0**
|
24 |
+
This is a trained model of a **PPO** agent playing **seals/Walker2d-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo ppo --env seals/Walker2d-v0 -orga ernestumorga -f logs/
|
41 |
+
python enjoy.py --algo ppo --env seals/Walker2d-v0 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo ppo --env seals/Walker2d-v0 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo ppo --env seals/Walker2d-v0 -f logs/ -orga ernestumorga
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('batch_size', 8),
|
54 |
+
('clip_range', 0.4),
|
55 |
+
('ent_coef', 0.00013057334805552262),
|
56 |
+
('gae_lambda', 0.92),
|
57 |
+
('gamma', 0.98),
|
58 |
+
('learning_rate', 3.791707778339674e-05),
|
59 |
+
('max_grad_norm', 0.6),
|
60 |
+
('n_envs', 1),
|
61 |
+
('n_epochs', 5),
|
62 |
+
('n_steps', 2048),
|
63 |
+
('n_timesteps', 1000000.0),
|
64 |
+
('normalize', True),
|
65 |
+
('policy', 'MlpPolicy'),
|
66 |
+
('policy_kwargs',
|
67 |
+
'dict(activation_fn=nn.ReLU, net_arch=[dict(pi=[256, 256], '
|
68 |
+
'vf=[256, 256])])'),
|
69 |
+
('vf_coef', 0.6167177795726859),
|
70 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
71 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - device
|
5 |
+
- cpu
|
6 |
+
- - env
|
7 |
+
- seals/Walker2d-v0
|
8 |
+
- - env_kwargs
|
9 |
+
- null
|
10 |
+
- - eval_episodes
|
11 |
+
- 5
|
12 |
+
- - eval_freq
|
13 |
+
- 25000
|
14 |
+
- - gym_packages
|
15 |
+
- []
|
16 |
+
- - hyperparams
|
17 |
+
- null
|
18 |
+
- - log_folder
|
19 |
+
- seals_experts
|
20 |
+
- - log_interval
|
21 |
+
- -1
|
22 |
+
- - n_eval_envs
|
23 |
+
- 1
|
24 |
+
- - n_evaluations
|
25 |
+
- null
|
26 |
+
- - n_jobs
|
27 |
+
- 1
|
28 |
+
- - n_startup_trials
|
29 |
+
- 10
|
30 |
+
- - n_timesteps
|
31 |
+
- -1
|
32 |
+
- - n_trials
|
33 |
+
- 500
|
34 |
+
- - no_optim_plots
|
35 |
+
- false
|
36 |
+
- - num_threads
|
37 |
+
- 4
|
38 |
+
- - optimization_log_path
|
39 |
+
- null
|
40 |
+
- - optimize_hyperparameters
|
41 |
+
- false
|
42 |
+
- - pruner
|
43 |
+
- median
|
44 |
+
- - sampler
|
45 |
+
- tpe
|
46 |
+
- - save_freq
|
47 |
+
- -1
|
48 |
+
- - save_replay_buffer
|
49 |
+
- false
|
50 |
+
- - seed
|
51 |
+
- 2934877101
|
52 |
+
- - storage
|
53 |
+
- null
|
54 |
+
- - study_name
|
55 |
+
- null
|
56 |
+
- - tensorboard_log
|
57 |
+
- ''
|
58 |
+
- - total_n_trials
|
59 |
+
- null
|
60 |
+
- - track
|
61 |
+
- false
|
62 |
+
- - trained_agent
|
63 |
+
- ''
|
64 |
+
- - truncate_last_trajectory
|
65 |
+
- true
|
66 |
+
- - uuid
|
67 |
+
- false
|
68 |
+
- - vec_env
|
69 |
+
- dummy
|
70 |
+
- - verbose
|
71 |
+
- 1
|
72 |
+
- - wandb_entity
|
73 |
+
- null
|
74 |
+
- - wandb_project_name
|
75 |
+
- sb3
|
config.yml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 8
|
4 |
+
- - clip_range
|
5 |
+
- 0.4
|
6 |
+
- - ent_coef
|
7 |
+
- 0.00013057334805552262
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.92
|
10 |
+
- - gamma
|
11 |
+
- 0.98
|
12 |
+
- - learning_rate
|
13 |
+
- 3.791707778339674e-05
|
14 |
+
- - max_grad_norm
|
15 |
+
- 0.6
|
16 |
+
- - n_envs
|
17 |
+
- 1
|
18 |
+
- - n_epochs
|
19 |
+
- 5
|
20 |
+
- - n_steps
|
21 |
+
- 2048
|
22 |
+
- - n_timesteps
|
23 |
+
- 1000000.0
|
24 |
+
- - normalize
|
25 |
+
- true
|
26 |
+
- - policy
|
27 |
+
- MlpPolicy
|
28 |
+
- - policy_kwargs
|
29 |
+
- dict(activation_fn=nn.ReLU, net_arch=[dict(pi=[256, 256], vf=[256, 256])])
|
30 |
+
- - vf_coef
|
31 |
+
- 0.6167177795726859
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-seals/Walker2d-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47e23c3bc10534741c1cea0a566a4c82bc6cc75f39a34f602cf9da83336aafc9
|
3 |
+
size 1750082
|
ppo-seals/Walker2d-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-seals/Walker2d-v0/data
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f45c4d34f70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45c4d38040>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45c4d380d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45c4d38160>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f45c4d381f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f45c4d38280>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45c4d38310>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f45c4d383a0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45c4d38430>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45c4d384c0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45c4d38550>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f45c4d2f6c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVbAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoTQABTQABZYwCdmaUXZQoTQABTQABZXVhdS4=",
|
25 |
+
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
|
26 |
+
"net_arch": [
|
27 |
+
{
|
28 |
+
"pi": [
|
29 |
+
256,
|
30 |
+
256
|
31 |
+
],
|
32 |
+
"vf": [
|
33 |
+
256,
|
34 |
+
256
|
35 |
+
]
|
36 |
+
}
|
37 |
+
]
|
38 |
+
},
|
39 |
+
"observation_space": {
|
40 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
41 |
+
":serialized:": "gAWVkwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWkAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaApLEoWUjAFDlHSUUpSMBGhpZ2iUaBIolpAAAAAAAAAAAAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lGgKSxKFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLEoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsShZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
42 |
+
"dtype": "float64",
|
43 |
+
"_shape": [
|
44 |
+
18
|
45 |
+
],
|
46 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf]",
|
47 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
|
48 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False]",
|
49 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False]",
|
50 |
+
"_np_random": null
|
51 |
+
},
|
52 |
+
"action_space": {
|
53 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
54 |
+
":serialized:": "gAWVEwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
55 |
+
"dtype": "float32",
|
56 |
+
"_shape": [
|
57 |
+
6
|
58 |
+
],
|
59 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
60 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
61 |
+
"bounded_below": "[ True True True True True True]",
|
62 |
+
"bounded_above": "[ True True True True True True]",
|
63 |
+
"_np_random": "RandomState(MT19937)"
|
64 |
+
},
|
65 |
+
"n_envs": 1,
|
66 |
+
"num_timesteps": 1001472,
|
67 |
+
"_total_timesteps": 1000000,
|
68 |
+
"_num_timesteps_at_start": 0,
|
69 |
+
"seed": 0,
|
70 |
+
"action_noise": null,
|
71 |
+
"start_time": 1651240812.6468017,
|
72 |
+
"learning_rate": {
|
73 |
+
":type:": "<class 'function'>",
|
74 |
+
":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8D4STfUCRPhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
75 |
+
},
|
76 |
+
"tensorboard_log": null,
|
77 |
+
"lr_schedule": {
|
78 |
+
":type:": "<class 'function'>",
|
79 |
+
":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8D4STfUCRPhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
80 |
+
},
|
81 |
+
"_last_obs": null,
|
82 |
+
"_last_episode_starts": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
85 |
+
},
|
86 |
+
"_last_original_obs": {
|
87 |
+
":type:": "<class 'numpy.ndarray'>",
|
88 |
+
":serialized:": "gAWVBQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaQAAAAAAAAAPZffn7X42G/CWkKefwC9D/u9LPyiVdmv9XslXaw/XG/5yAYMcjXYb9Qbox/m4RKP6ZAwfGLY2c/tsZw57q0c78Yqp2bPqpCPz/DEizQUHI/+FaBbjo5TT8Wg1z0t6doP/45N6H4FmQ/AE1N8lZUC7/GFHtzKXlrP+YXv/WQYms/QO5/5mM7MD8qB86WBh5av5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsShpSMAUOUdJRSlC4="
|
89 |
+
},
|
90 |
+
"_episode_num": 0,
|
91 |
+
"use_sde": false,
|
92 |
+
"sde_sample_freq": -1,
|
93 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
94 |
+
"ep_info_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInS6LiR1fmkCUhpRSlIwBbJRN6AOMAXSUR0Cg6AXkYGdJdX2UKGgGaAloD0MIEjKQZxeklUCUhpRSlGgVTegDaBZHQKDpZ70nPVx1fZQoaAZoCWgPQwjMuKmBpkSLQJSGlFKUaBVN6ANoFkdAoPE6nBLwnnV9lChoBmgJaA9DCI9yMJtw9JlAlIaUUpRoFU3oA2gWR0Cg8qJ7sv7FdX2UKGgGaAloD0MIdcx5xk7ql0CUhpRSlGgVTegDaBZHQKD6YVymygR1fZQoaAZoCWgPQwixpx3+WpKcQJSGlFKUaBVN6ANoFkdAoPvE21lXinV9lChoBmgJaA9DCHeC/de5zZJAlIaUUpRoFU3oA2gWR0ChA4ZZ0SyudX2UKGgGaAloD0MI2SJpNyrflkCUhpRSlGgVTegDaBZHQKEE5+kxh2J1fZQoaAZoCWgPQwhP6PUn6SKgQJSGlFKUaBVN6ANoFkdAoQyjASFoMHV9lChoBmgJaA9DCBeDh2kfopdAlIaUUpRoFU3oA2gWR0ChDgYNqgyudX2UKGgGaAloD0MIozodyOoZmUCUhpRSlGgVTegDaBZHQKEVyxpL26F1fZQoaAZoCWgPQwigM2lT5dKbQJSGlFKUaBVN6ANoFkdAoRctNL127nV9lChoBmgJaA9DCGQGKuMfpJZAlIaUUpRoFU3oA2gWR0ChHvK/VRUFdX2UKGgGaAloD0MI0SAFT9Hkm0CUhpRSlGgVTegDaBZHQKEgVwxWT5h1fZQoaAZoCWgPQwifymlPyV2UQJSGlFKUaBVN6ANoFkdAoShGEEkjYHV9lChoBmgJaA9DCHv2XKZO6aFAlIaUUpRoFU3oA2gWR0ChKamJN0vHdX2UKGgGaAloD0MIm1lLAZH6oECUhpRSlGgVTegDaBZHQKExbhG6PKd1fZQoaAZoCWgPQwjnNAu0CzWZQJSGlFKUaBVN6ANoFkdAoTLQCW/rSnV9lChoBmgJaA9DCOoGCrzjYptAlIaUUpRoFU3oA2gWR0ChOpRGc4HYdX2UKGgGaAloD0MIZVQZxh3+m0CUhpRSlGgVTegDaBZHQKE7+AU+LWJ1fZQoaAZoCWgPQwhb07zjVESdQJSGlFKUaBVN6ANoFkdAoUPIb4rSVnV9lChoBmgJaA9DCBYVcTqp5oBAlIaUUpRoFU3oA2gWR0ChRSwpON5udX2UKGgGaAloD0MI3/jaM8t+mUCUhpRSlGgVTegDaBZHQKFMz/vOQhh1fZQoaAZoCWgPQwhd3EYDuEOeQJSGlFKUaBVN6ANoFkdAoU4wtvn8sXV9lChoBmgJaA9DCEROX88HFphAlIaUUpRoFU3oA2gWR0ChW4JGnXNDdX2UKGgGaAloD0MILXqnAqZyoECUhpRSlGgVTegDaBZHQKFc4NGViWp1fZQoaAZoCWgPQwiX5esybG2aQJSGlFKUaBVN6ANoFkdAoWSHwPRRdnV9lChoBmgJaA9DCMuEX+qHE5VAlIaUUpRoFU3oA2gWR0ChZeiRGMGYdX2UKGgGaAloD0MIHuBJC3dwk0CUhpRSlGgVTegDaBZHQKFtfXRw6yV1fZQoaAZoCWgPQwgofoy5K0GdQJSGlFKUaBVN6ANoFkdAoW7bWoWHlHV9lChoBmgJaA9DCCTtRh/TeY1AlIaUUpRoFU3oA2gWR0Chdppbt7a7dX2UKGgGaAloD0MI3q0s0em7l0CUhpRSlGgVTegDaBZHQKF3+eOGTLZ1fZQoaAZoCWgPQwiqZWt9ceCYQJSGlFKUaBVN6ANoFkdAoX+pf6XSjXV9lChoBmgJaA9DCPnX8srVnZtAlIaUUpRoFU3oA2gWR0ChgQmgi/widX2UKGgGaAloD0MIklm9wy1AmUCUhpRSlGgVTegDaBZHQKGIuJ/G2kV1fZQoaAZoCWgPQwghAg6hWsKTQJSGlFKUaBVN6ANoFkdAoYoXZVXFLnV9lChoBmgJaA9DCDlFR3K5xZtAlIaUUpRoFU3oA2gWR0ChkcUVi4KAdX2UKGgGaAloD0MIN/xuutUXokCUhpRSlGgVTegDaBZHQKGTLS1E3Kl1fZQoaAZoCWgPQwg7inPUgWmeQJSGlFKUaBVN6ANoFkdAoZSF3OfNA3V9lChoBmgJaA9DCJVm8ziMi5dAlIaUUpRoFU3oA2gWR0ChnB49X9zfdX2UKGgGaAloD0MIaTaPw9CynECUhpRSlGgVTegDaBZHQKGdfF5v9+B1fZQoaAZoCWgPQwjLL4Mx8s6VQJSGlFKUaBVN6ANoFkdAoaU2YhMaj3V9lChoBmgJaA9DCINMMnJWkp1AlIaUUpRoFU3oA2gWR0Chppcan753dX2UKGgGaAloD0MItg4O9qZvkkCUhpRSlGgVTegDaBZHQKGuTv73wkR1fZQoaAZoCWgPQwhHqu/8olmcQJSGlFKUaBVN6ANoFkdAoa+uDxsl9nV9lChoBmgJaA9DCMK+nUQEIZ1AlIaUUpRoFU3oA2gWR0Cht4J7CzkZdX2UKGgGaAloD0MIiSXl7sMMkUCUhpRSlGgVTegDaBZHQKG44WVu76J1fZQoaAZoCWgPQwh5ru/D4XWWQJSGlFKUaBVN6ANoFkdAocGRgiNbT3V9lChoBmgJaA9DCJrpXidVg51AlIaUUpRoFU3oA2gWR0ChwvKs+3YudX2UKGgGaAloD0MI9pUH6ZlvmkCUhpRSlGgVTegDaBZHQKHQbvAGjbl1fZQoaAZoCWgPQwg4o+ar5FmTQJSGlFKUaBVN6ANoFkdAodHOsT37DXV9lChoBmgJaA9DCP6Y1qbRb5RAlIaUUpRoFU3oA2gWR0Ch2XO+h4+sdX2UKGgGaAloD0MIWOVC5T+blUCUhpRSlGgVTegDaBZHQKHa2Pd2xIJ1fZQoaAZoCWgPQwgxBtZx7MSUQJSGlFKUaBVN6ANoFkdAoeKIID5j6XV9lChoBmgJaA9DCIp1qnynLqFAlIaUUpRoFU3oA2gWR0Ch4+aHbh3rdX2UKGgGaAloD0MIUil2NE67fkCUhpRSlGgVTegDaBZHQKHrjXK8tf51fZQoaAZoCWgPQwjTLqaZrkiYQJSGlFKUaBVN6ANoFkdAoeztvQ4S6HV9lChoBmgJaA9DCHr7c9Fg8pdAlIaUUpRoFU3oA2gWR0Ch9KQPRRdhdX2UKGgGaAloD0MIutv10oQ3l0CUhpRSlGgVTegDaBZHQKH2ASjgydp1fZQoaAZoCWgPQwio/Gt55cqYQJSGlFKUaBVN6ANoFkdAof2Paews5HV9lChoBmgJaA9DCE+V7xkJAYVAlIaUUpRoFU3oA2gWR0Ch/t+1KGtZdX2UKGgGaAloD0MI6ukj8IcFmUCUhpRSlGgVTegDaBZHQKIGcuvECNl1fZQoaAZoCWgPQwjRBfUto3GbQJSGlFKUaBVN6ANoFkdAogfRqKxcFHV9lChoBmgJaA9DCD7o2axS/qBAlIaUUpRoFU3oA2gWR0CiD/CQT238dX2UKGgGaAloD0MIwlHy6qy4nECUhpRSlGgVTegDaBZHQKIRzEMLF4t1fZQoaAZoCWgPQwgeF9Uisl6YQJSGlFKUaBVN6ANoFkdAohuJjFyaNXV9lChoBmgJaA9DCIaOHVRCQppAlIaUUpRoFU3oA2gWR0CiHOwkPczqdX2UKGgGaAloD0MIbFuU2WCymUCUhpRSlGgVTegDaBZHQKIkrsxfv4N1fZQoaAZoCWgPQwgHsp5aXZahQJSGlFKUaBVN6ANoFkdAoiYRLTQVsXV9lChoBmgJaA9DCLjLft3JDpRAlIaUUpRoFU3oA2gWR0CiL3t+TeO5dX2UKGgGaAloD0MI6j4AqS3hmUCUhpRSlGgVTegDaBZHQKIw27mMfih1fZQoaAZoCWgPQwiRgTy7LCyQQJSGlFKUaBVN6ANoFkdAojmgBeXzDnV9lChoBmgJaA9DCJhp+1d29JJAlIaUUpRoFU3oA2gWR0CiOv6n752ydX2UKGgGaAloD0MIoE/kSYLTnECUhpRSlGgVTegDaBZHQKJELkTYdyV1fZQoaAZoCWgPQwiDiT+KahiUQJSGlFKUaBVN6ANoFkdAoktVsDW9UXV9lChoBmgJaA9DCM9qgT3mao5AlIaUUpRoFU3oA2gWR0CiVLogFHJ+dX2UKGgGaAloD0MIGjOJenGPmUCUhpRSlGgVTegDaBZHQKJWGURnOB11fZQoaAZoCWgPQwj93NCUvbedQJSGlFKUaBVN6ANoFkdAol+kzfrKNnV9lChoBmgJaA9DCElIpG1MeJNAlIaUUpRoFU3oA2gWR0CiYPZ/0/W2dX2UKGgGaAloD0MIVTAqqQNbm0CUhpRSlGgVTegDaBZHQKJppMB6rvN1fZQoaAZoCWgPQwiVKlH2VuSNQJSGlFKUaBVN6ANoFkdAomsDa9K28nV9lChoBmgJaA9DCEZblUQmlZhAlIaUUpRoFU3oA2gWR0CibGKI7/4qdX2UKGgGaAloD0MIkL+0qN/TmUCUhpRSlGgVTegDaBZHQKJ0veBQN1B1fZQoaAZoCWgPQwgBFY4gZXqVQJSGlFKUaBVN6ANoFkdAonYer2g3+HV9lChoBmgJaA9DCIv+0MwDC5dAlIaUUpRoFU3oA2gWR0CifouIhyKfdX2UKGgGaAloD0MIRpT2Bh87jkCUhpRSlGgVTegDaBZHQKJ/6qFyq+91fZQoaAZoCWgPQwgtP3CVJ0ygQJSGlFKUaBVN6ANoFkdAooeQsZpBX3V9lChoBmgJaA9DCChk521MmpNAlIaUUpRoFU3oA2gWR0CiiO7GvOhTdX2UKGgGaAloD0MIMzffiE75mkCUhpRSlGgVTegDaBZHQKKQl3dsSCh1fZQoaAZoCWgPQwhgdk8e1tGaQJSGlFKUaBVN6ANoFkdAopH2iDdxhnV9lChoBmgJaA9DCOvHJvlBTZ1AlIaUUpRoFU3oA2gWR0Cimagqd6LPdX2UKGgGaAloD0MIlDR/TJtemECUhpRSlGgVTegDaBZHQKKbCk2P1ct1fZQoaAZoCWgPQwhw0clSy2iVQJSGlFKUaBVN6ANoFkdAoqRWOhkAgnV9lChoBmgJaA9DCEVHcvlvUpZAlIaUUpRoFU3oA2gWR0CipfO6d1+zdX2UKGgGaAloD0MIbr98siK7hECUhpRSlGgVTegDaBZHQKKtu1NQCS11fZQoaAZoCWgPQwg34PPDeIuZQJSGlFKUaBVN6ANoFkdAoq8bftQbdnV9lChoBmgJaA9DCNEeL6SD55JAlIaUUpRoFU3oA2gWR0CiuB9q+JxedX2UKGgGaAloD0MIghspW4RdlECUhpRSlGgVTegDaBZHQKK5gKfnOjZ1fZQoaAZoCWgPQwgPuRluEJaYQJSGlFKUaBVN6ANoFkdAosFAw7DEWXV9lChoBmgJaA9DCISAfAnlvZdAlIaUUpRoFU3oA2gWR0CiyLd1uBMBdWUu"
|
97 |
+
},
|
98 |
+
"ep_success_buffer": {
|
99 |
+
":type:": "<class 'collections.deque'>",
|
100 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
101 |
+
},
|
102 |
+
"_n_updates": 2445,
|
103 |
+
"n_steps": 2048,
|
104 |
+
"gamma": 0.98,
|
105 |
+
"gae_lambda": 0.92,
|
106 |
+
"ent_coef": 0.00013057334805552262,
|
107 |
+
"vf_coef": 0.6167177795726859,
|
108 |
+
"max_grad_norm": 0.6,
|
109 |
+
"batch_size": 8,
|
110 |
+
"n_epochs": 5,
|
111 |
+
"clip_range": {
|
112 |
+
":type:": "<class 'function'>",
|
113 |
+
":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/ZmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
114 |
+
},
|
115 |
+
"clip_range_vf": null,
|
116 |
+
"normalize_advantage": true,
|
117 |
+
"target_kl": null
|
118 |
+
}
|
ppo-seals/Walker2d-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1be9651f556b13dd99d2f63f544d754c890ab5570037bdc03fab0b5da59029d
|
3 |
+
size 1151703
|
ppo-seals/Walker2d-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71c75837ca56e7af5550f2689ed2510533736cce25982403bb34719a388e76de
|
3 |
+
size 576702
|
ppo-seals/Walker2d-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-seals/Walker2d-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-109-generic-x86_64-with-glibc2.29 #123-Ubuntu SMP Fri Apr 8 09:10:54 UTC 2022
|
2 |
+
Python: 3.8.10
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu102
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.22.3
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8fb76410fafea0a8d387143223a0b5e27bc21d4884f7ed3f7bca8a775aff60f
|
3 |
+
size 1340595
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1429.1260997000002, "std_reward": 411.7513179252928, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-30T12:53:42.750829"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dafa75106e0bba0310a84929ed2bd1d6226d0dccfa481589b732c063e94da1bc
|
3 |
+
size 33646
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:542867e3400c720bdcee550a63b8752297cb271589929d6276ee77c4bfa4e717
|
3 |
+
size 4770
|