---
library_name: stable-baselines3
tags:
- seals/Ant-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: SAC
results:
- metrics:
- type: mean_reward
value: 966.10 +/- 34.50
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: seals/Ant-v0
type: seals/Ant-v0
---
# **SAC** Agent playing **seals/Ant-v0**
This is a trained model of a **SAC** agent playing **seals/Ant-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo sac --env seals/Ant-v0 -orga ernestumorga -f logs/
python enjoy.py --algo sac --env seals/Ant-v0 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo sac --env seals/Ant-v0 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo sac --env seals/Ant-v0 -f logs/ -orga ernestumorga
```
## Hyperparameters
```python
OrderedDict([('batch_size', 512),
('buffer_size', 1000000),
('gamma', 0.98),
('learning_rate', 0.0018514039303149058),
('learning_starts', 1000),
('n_timesteps', 1000000.0),
('policy', 'MlpPolicy'),
('policy_kwargs',
'dict(net_arch=[256, 256], log_std_init=-2.2692589009754176)'),
('tau', 0.05),
('train_freq', 64),
('normalize', False)])
```