ernestum commited on
Commit
1b67e9b
1 Parent(s): b299172

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - seals/Humanoid-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -200.52 +/- 55.30
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: seals/Humanoid-v0
20
+ type: seals/Humanoid-v0
21
+ ---
22
+
23
+ # **SAC** Agent playing **seals/Humanoid-v0**
24
+ This is a trained model of a **SAC** agent playing **seals/Humanoid-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo sac --env seals/Humanoid-v0 -orga ernestumorga -f logs/
41
+ python enjoy.py --algo sac --env seals/Humanoid-v0 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo sac --env seals/Humanoid-v0 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo sac --env seals/Humanoid-v0 -f logs/ -orga ernestumorga
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('batch_size', 64),
54
+ ('buffer_size', 100000),
55
+ ('gamma', 0.98),
56
+ ('learning_rate', 4.426351861707874e-05),
57
+ ('learning_starts', 20000),
58
+ ('n_timesteps', 2000000.0),
59
+ ('policy', 'MlpPolicy'),
60
+ ('policy_kwargs',
61
+ 'dict(net_arch=[400, 300], log_std_init=-0.1034412732183072)'),
62
+ ('tau', 0.08),
63
+ ('train_freq', 8),
64
+ ('normalize', False)])
65
+ ```
args.yml ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - sac
4
+ - - device
5
+ - cpu
6
+ - - env
7
+ - seals/Humanoid-v0
8
+ - - env_kwargs
9
+ - null
10
+ - - eval_episodes
11
+ - 5
12
+ - - eval_freq
13
+ - 25000
14
+ - - gym_packages
15
+ - []
16
+ - - hyperparams
17
+ - null
18
+ - - log_folder
19
+ - seals_experts
20
+ - - log_interval
21
+ - -1
22
+ - - n_eval_envs
23
+ - 1
24
+ - - n_evaluations
25
+ - null
26
+ - - n_jobs
27
+ - 1
28
+ - - n_startup_trials
29
+ - 10
30
+ - - n_timesteps
31
+ - -1
32
+ - - n_trials
33
+ - 500
34
+ - - no_optim_plots
35
+ - false
36
+ - - num_threads
37
+ - 4
38
+ - - optimization_log_path
39
+ - null
40
+ - - optimize_hyperparameters
41
+ - false
42
+ - - pruner
43
+ - median
44
+ - - sampler
45
+ - tpe
46
+ - - save_freq
47
+ - -1
48
+ - - save_replay_buffer
49
+ - false
50
+ - - seed
51
+ - 175967158
52
+ - - storage
53
+ - null
54
+ - - study_name
55
+ - null
56
+ - - tensorboard_log
57
+ - ''
58
+ - - total_n_trials
59
+ - null
60
+ - - track
61
+ - false
62
+ - - trained_agent
63
+ - ''
64
+ - - truncate_last_trajectory
65
+ - true
66
+ - - uuid
67
+ - false
68
+ - - vec_env
69
+ - dummy
70
+ - - verbose
71
+ - 1
72
+ - - wandb_entity
73
+ - null
74
+ - - wandb_project_name
75
+ - sb3
config.yml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 64
4
+ - - buffer_size
5
+ - 100000
6
+ - - gamma
7
+ - 0.98
8
+ - - learning_rate
9
+ - 4.426351861707874e-05
10
+ - - learning_starts
11
+ - 20000
12
+ - - n_timesteps
13
+ - 2000000.0
14
+ - - policy
15
+ - MlpPolicy
16
+ - - policy_kwargs
17
+ - dict(net_arch=[400, 300], log_std_init=-0.1034412732183072)
18
+ - - tau
19
+ - 0.08
20
+ - - train_freq
21
+ - 8
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d44bb3b706addf9b16776a5c68b1f312e12bdcb21ed411312260017980a5e1b4
3
+ size 903077
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -200.52407769999996, "std_reward": 55.302160982182905, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-11T14:39:10.951354"}
sac-seals-Humanoid-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81529a1b07cf73170a1f2e5d8f63d2397b28b7c8d516f7bd71b1ef7288c37506
3
+ size 12378435
sac-seals-Humanoid-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
sac-seals-Humanoid-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d84e547d9fe11864acaa0bbb972848587d50f4ddb2990a40a27bdf41338e93d
3
+ size 2261237
sac-seals-Humanoid-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:362436b69608bbc7a882f0501647b4c1f11eb0a0cc7c34e35d8a197ebd823a0c
3
+ size 4470173
sac-seals-Humanoid-v0/data ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function SACPolicy.__init__ at 0x7f2dfac0ce50>",
8
+ "_build": "<function SACPolicy._build at 0x7f2dfac0cee0>",
9
+ "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f2dfac0cf70>",
10
+ "reset_noise": "<function SACPolicy.reset_noise at 0x7f2dfac17040>",
11
+ "make_actor": "<function SACPolicy.make_actor at 0x7f2dfac170d0>",
12
+ "make_critic": "<function SACPolicy.make_critic at 0x7f2dfac17160>",
13
+ "forward": "<function SACPolicy.forward at 0x7f2dfac171f0>",
14
+ "_predict": "<function SACPolicy._predict at 0x7f2dfac17280>",
15
+ "set_training_mode": "<function SACPolicy.set_training_mode at 0x7f2dfac17310>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc_data object at 0x7f2dfac0bc90>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "net_arch": [
22
+ 400,
23
+ 300
24
+ ],
25
+ "log_std_init": -0.1034412732183072,
26
+ "use_sde": false
27
+ },
28
+ "observation_space": {
29
+ ":type:": "<class 'gym.spaces.box.Box'>",
30
+ ":serialized:": "gAWV6BsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRNegGFlIwDbG93lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoltALAAAAAAAAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKTXoBhZSMAUOUdJRSlIwEaGlnaJRoEiiW0AsAAAAAAAAAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApNegGFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWegEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJNegGFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWegEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFNegGFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
31
+ "dtype": "float64",
32
+ "_shape": [
33
+ 378
34
+ ],
35
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
36
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
37
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False]",
38
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False]",
39
+ "_np_random": null
40
+ },
41
+ "action_space": {
42
+ ":type:": "<class 'gym.spaces.box.Box'>",
43
+ ":serialized:": "gAWVgQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWRAAAAAAAAADNzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvpRoCksRhZSMAUOUdJRSlIwEaGlnaJRoEiiWRAAAAAAAAADNzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPpRoCksRhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolhEAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLEYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYRAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBlGghSxGFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
44
+ "dtype": "float32",
45
+ "_shape": [
46
+ 17
47
+ ],
48
+ "low": "[-0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4\n -0.4 -0.4 -0.4]",
49
+ "high": "[0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4]",
50
+ "bounded_below": "[ True True True True True True True True True True True True\n True True True True True]",
51
+ "bounded_above": "[ True True True True True True True True True True True True\n True True True True True]",
52
+ "_np_random": "RandomState(MT19937)"
53
+ },
54
+ "n_envs": 1,
55
+ "num_timesteps": 2000000,
56
+ "_total_timesteps": 2000000,
57
+ "_num_timesteps_at_start": 0,
58
+ "seed": 0,
59
+ "action_noise": null,
60
+ "start_time": 1651241344.1712685,
61
+ "learning_rate": {
62
+ ":type:": "<class 'function'>",
63
+ ":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8HNPLrPv3NhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
64
+ },
65
+ "tensorboard_log": null,
66
+ "lr_schedule": {
67
+ ":type:": "<class 'function'>",
68
+ ":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8HNPLrPv3NhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
69
+ },
70
+ "_last_obs": null,
71
+ "_last_episode_starts": {
72
+ ":type:": "<class 'numpy.ndarray'>",
73
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
74
+ },
75
+ "_last_original_obs": {
76
+ ":type:": "<class 'numpy.ndarray'>",
77
+ ":serialized:": "gAWVRgwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbQCwAAAAAAAC7rJ6CCMfc/D3HgXT6ZtL/qjulOFHbAP2kx2FPDMd6/QCWHo3Va4j9H4l3ApZbAP8Z9UPJGBuU/V6q2V9416b8xO2E6Y2rtv81bqzKSm+O/wH2Q6D/L2r9n/3ekMNXwvwP5VUQUB/+/Mgs1pYyNBsBiw00wrxG3P39NbmxR8uM/RKytOTP0/r/YVExA0Pp+v3D19gAu/Ou/fHn+IdKG9b9WrxvuBGz2v0urtdFvzPc/kKh1oqIqvz/BOGKrXTj5vwb7/UgrqaQ/yfGvl2p2mD8wzk0Uhzmjv12Lcuf0qs2/wQRg+jV90r9cXrshGOdwP3eNZCaVvqi/ABC5WMg/3j8gnype2V9pP3nih+nkmLu/qD3Nek+Rv78L84KNVpmxP7WBXjkjSas/YPUNpCvylr+v/nH3RF/NP3sZuG9ds6q/HO4kxcQqk7+0yiaeHADSP0Zf3kWK/tM/CIs/Kess5b8N72wdNX25v/SjtSzEtdm/qMbypZZchD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOsT+7Zj0Lo/SL+ry35Y1D+AsolXC53XP/GqNdV1BbO/MqzCrOUSh7/TBZRn1uGev9hq2z3AyfU/k4WBfxoPwj+SzizPQpyyv8OO3ofnpCBAQB3rYZaosj9aZtz3DuGMP8yKK/1w+bE/vWOTpoz1hb++U6ETJUNzv3/9pOnQwJK/2NYxZkM3sr+2crxwiofWvzWsi1LBery//T2EXThJAEBHfxvZ0AHSP3YdFYr1vM0/9JkfTAqP3j/A5FhGHz/Mv3uzpdZPe5G//bXXltlhh7+qquf8AWnxv95G9w8QD/O/p5zo5Eu1tr8cGW4GQWkXQAQIoBTvDK4/MGeh8RxevD+7TR+fwA6+P/grEQ4IwZa/G5Mu/2MPnr++ySMvsg6AP4ZgJ6JoWd+/7h2aIp2Fqj861i8/vODTv3vwbGsrGhJA6NnMoeAJpj+IGe7s0RGyP9Z6P7/ZWbQ/S2mB9JG2jj/kzYDw5FmUvw6PZF4LwZI/jvyZI6aT0r8nAgZJI/TMP0C1V7yFo8m/b7tbPFkPBUBtEn0QcqiDP75mzYywCMQ/nGUi8m9Rwz/eEHzYbmBYv4vkwHqRZJ2/VghPgmsMM79yiSYcTU7gv1pH8+RyInW/e18/8cp7ub+7ssy+Okb8P+6DEs+FBsU/jB9k+J23wT/oH+rJ41vKP09cj9eAlri/pEIw+B6bqT9YPCFELl6oPxfb6DebG+K/v81kOb5O4r8UBON7iyHcP3vwbGsrGhJAQOOjKFreyD9+3fbX9IG5Px3Ybbhg58E/lm8Y5ei9qL+s0TN94gmiv8BAy+cC9ra/BeaniSnZyD9wx91zQUbgP2RwQl9XVdw/b7tbPFkPBUBMlVFDecfTP1HmKD09Y8E/fY0Xmctv0j+zTRuu/NK8v8Zf9hXuqbC/b/l3m47rwL9FZ1v2bQjUP/mbf0RTV+Q/fy0/WeeE1z+7ssy+Okb8PzI1m/0126s/A5SuMVlTkj8Lom3aTGqwPzLs1Rdf5JQ/+lxP50mxd799uskGOBV0P1WNuwr7h7i/jDR0hfyl0T8My9cO9aOLv2z8deREgfk/UAv9Cbm+wz+uU3FLHk/GP85fbf2VWdM/ThhSl70xwz91q1qOv7qmv7ZrCoCrk6U/0K4ckwtO27+4yMaqO/7ZP9kN1454rr+/w96z2Gks8z/94kHsyiOSP4IwrdZ+uNU/cjLU5SpC1T+ysjniEzKjP9WV0UmHyq8/GrIae35+fb82zydPnKLmP0ZToXRb5rW/blPGD55Zwb9s/HXkRIH5Pxwrf4vl3IM/ADq9q0lO6T/zyZtQERrpPxW3VJRlQ58/6KKIi/O6sj9YOBopR3xqvyYa9R/DwO4/oQBs62ISpL98nwQU3ga4v8Pes9hpLPM/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWZ3C/hMmz7/nkcrqkNHQP4f9TePYN7i//ta7Qr7Zpz+ZTBF+vE+lP8DW6nbOs3G/IGCVnZZAkj+MK3ZJiDq6vx7scD78La8//GdNTs5Sgb+DjwmkkcWQP/qUyyH+hJ0/hhC84sTykj9YJbmZS8K5v23VVDBJNLA/00SYkvE4gr/aptrbvfaQP/F4/uH9f50//g5MxQvZvb+YUBPHZba6v/zbQh4Lo6U/oCU6IQXee79UpsuCjgSTP5pw1BVqu44/JvngV9M0vr8dy0p8Wfy8v/yLmUyHFYW/zP+GuO1/kL9v3kcxGF2VPxcsDWaJco4/JvngV9M0vr8dy0p8Wfy8v/yLmUyHFYW/zP+GuO1/kL9v3kcxGF2VPxcsDWaJco4/6BFmf/Rpyr9qqNhb3Wujv8xk43wilLE/iql/TcP0jb8cIWUM+SdjP9PZkdRPDae/XbFUWQ0kyr9EiUvUQEamv2HUQixbIbY/lCWKBsKKir/QX5M3J5BnP5nj0NRtEae/XbFUWQ0kyr9EiUvUQEamv2HUQixbIbY/lCWKBsKKir/QX5M3J5BnP5nj0NRtEae/gEjjdh7fuT/tw3T6MVPcP0JgRDrw1rA/8XavwSbRqz/JWq3w3pasP/eJfWeQ46K/2MhFfF1zzr/MftHprgm/v7nklz4dh8E/6gc4gLwYkT+8S1PVKzu6P5ZPZ7oPn8M/PC49OCyjzL8mtu7lrN3Cv2d0gpr9wcK/ldDG+KAfmD+WgabC+9WsP9D8FcZghcC/4zj7QvSQzL8Rt3GPYiHEv/PEORzgm8K/GvLok5nvlj/24jgXHHCsP9wVqqSDS8G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnSfAQcAAAAAUVqM/wAAAAGQBwT/AAAAAgHamEsAAAADPT1pDwAAAgMAugl3AAAAAtQ4hUcAAAADehK81QAAAAPZ96TpAAACA1spmXcAAAACLiI9RQAAAAACz5du/AAAAF1tSI8AAAAAlJSMgwAAAAKBjeuM/AAAAwG/RB8AAAABbGYIjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAU16AYaUjAFDlHSUUpQu"
78
+ },
79
+ "_episode_num": 2000,
80
+ "use_sde": false,
81
+ "sde_sample_freq": -1,
82
+ "_current_progress_remaining": 0.0,
83
+ "ep_info_buffer": {
84
+ ":type:": "<class 'collections.deque'>",
85
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImfViKCcDdUCUhpRSlIwBbJRN6AOMAXSUR0C8/ZhKtga4dX2UKGgGaAloD0MIWhKgplbgdECUhpRSlGgVTegDaBZHQL0CAOJ+Dvp1fZQoaAZoCWgPQwhhNgGGJW9yQJSGlFKUaBVN6ANoFkdAvQaYGLUCrHV9lChoBmgJaA9DCIpbBTEQpHFAlIaUUpRoFU3oA2gWR0C9CuPJq7AddX2UKGgGaAloD0MIU5eMY+SBcUCUhpRSlGgVTegDaBZHQL0O83yqdYp1fZQoaAZoCWgPQwgLmpZY2WFxQJSGlFKUaBVN6ANoFkdAvRMse2d/a3V9lChoBmgJaA9DCHdoWIy6UXJAlIaUUpRoFU3oA2gWR0C9F0XhfjS5dX2UKGgGaAloD0MIqDej5qvRcUCUhpRSlGgVTegDaBZHQL0bU2a2F391fZQoaAZoCWgPQwhQxY1bDIh2QJSGlFKUaBVN6ANoFkdAvSASMMqjJ3V9lChoBmgJaA9DCBkAqrix2XFAlIaUUpRoFU3oA2gWR0C9JOMG9pRGdX2UKGgGaAloD0MI220XmuuNcUCUhpRSlGgVTegDaBZHQL0pTyIpH7R1fZQoaAZoCWgPQwjgTbfskH1yQJSGlFKUaBVN6ANoFkdAvS17rv9cbHV9lChoBmgJaA9DCFfrxOW4q3BAlIaUUpRoFU3oA2gWR0C9MhmD15B1dX2UKGgGaAloD0MIvt2SHDAKdkCUhpRSlGgVTegDaBZHQL02X2YOUdJ1fZQoaAZoCWgPQwhMNh5s8R53QJSGlFKUaBVN6ANoFkdAvTqslt0mt3V9lChoBmgJaA9DCE+RQ8TN221AlIaUUpRoFU3oA2gWR0C9PzFymygPdX2UKGgGaAloD0MIP+WYLK5acECUhpRSlGgVTegDaBZHQL1DRF2FFlV1fZQoaAZoCWgPQwg6kWCqGTVwQJSGlFKUaBVN6ANoFkdAvUdLPgNwznV9lChoBmgJaA9DCFwhrMbSlXJAlIaUUpRoFU3oA2gWR0C9S3gCwKSgdX2UKGgGaAloD0MIptB5jV3ZcUCUhpRSlGgVTegDaBZHQL1P4kq+ajN1fZQoaAZoCWgPQwhuopbmlld0QJSGlFKUaBVN6ANoFkdAvVQaAhB7eHV9lChoBmgJaA9DCPksz4N7znZAlIaUUpRoFU3oA2gWR0C9WCtJrcj8dX2UKGgGaAloD0MIMunvpfAcb0CUhpRSlGgVTegDaBZHQL1cXJaaCtl1fZQoaAZoCWgPQwiojH+fcS9sQJSGlFKUaBVN6ANoFkdAvWBip97Wu3V9lChoBmgJaA9DCNi8qrPaAGtAlIaUUpRoFU3oA2gWR0C9ZFCEL6UJdX2UKGgGaAloD0MITFDDt7Dcc0CUhpRSlGgVTegDaBZHQL1vlgLqlgt1fZQoaAZoCWgPQwjP86eNqrB1QJSGlFKUaBVN6ANoFkdAvXRcQAdXDHV9lChoBmgJaA9DCIMwt3s5Z3tAlIaUUpRoFU3oA2gWR0C9eHPCQ9zPdX2UKGgGaAloD0MIL7/TZEagdkCUhpRSlGgVTegDaBZHQL18mzlcQiB1fZQoaAZoCWgPQwh5kQn4tZlyQJSGlFKUaBVN6ANoFkdAvYCTTLGJenV9lChoBmgJaA9DCMl06PQ8BXhAlIaUUpRoFU3oA2gWR0C9hGi9IwuedX2UKGgGaAloD0MIgzEiUajNckCUhpRSlGgVTegDaBZHQL2IZFLnLaF1fZQoaAZoCWgPQwgn2lVIOUp5QJSGlFKUaBVN6ANoFkdAvYzeFXaJynV9lChoBmgJaA9DCGa8rfQaWHhAlIaUUpRoFU3oA2gWR0C9kU03fhuPdX2UKGgGaAloD0MINbitLXwxcUCUhpRSlGgVTegDaBZHQL2VPwUQCjl1fZQoaAZoCWgPQwjK+ziaI8J0QJSGlFKUaBVN6ANoFkdAvZkcsYl6aHV9lChoBmgJaA9DCOjc7XopJXdAlIaUUpRoFU3oA2gWR0C9nQP/NqxkdX2UKGgGaAloD0MIsJKP3YXsdUCUhpRSlGgVTegDaBZHQL2hB78ejmF1fZQoaAZoCWgPQwiQhegQOAlyQJSGlFKUaBVN6ANoFkdAvaU2DaoMrnV9lChoBmgJaA9DCHCaPjtg5HJAlIaUUpRoFU3oA2gWR0C9qRtWhh6TdX2UKGgGaAloD0MI/5Hp0Ck8ckCUhpRSlGgVTegDaBZHQL2ttFOO8011fZQoaAZoCWgPQwiSk4lbRVx2QJSGlFKUaBVN6ANoFkdAvbI6xzJZGXV9lChoBmgJaA9DCJyHE5hOznVAlIaUUpRoFU3oA2gWR0C9txXEhq0udX2UKGgGaAloD0MI3QvMCsXPdUCUhpRSlGgVTegDaBZHQL27uiEg4fh1fZQoaAZoCWgPQwjCbAIMS9F0QJSGlFKUaBVN6ANoFkdAvcCcEC/47HV9lChoBmgJaA9DCHjxftw+B3hAlIaUUpRoFU3oA2gWR0C9xTAeii7DdX2UKGgGaAloD0MIKLhYUUOLd0CUhpRSlGgVTegDaBZHQL3JRwH7gsN1fZQoaAZoCWgPQwiYpghw+hJ0QJSGlFKUaBVN6ANoFkdAvc2AG6f8M3V9lChoBmgJaA9DCNEksaScBHpAlIaUUpRoFU3oA2gWR0C90c/ZqVQidX2UKGgGaAloD0MI5bUSuov7eECUhpRSlGgVTegDaBZHQL3WOSMLncN1fZQoaAZoCWgPQwiZ2HxcW+pxQJSGlFKUaBVN6ANoFkdAveEtR8+ianV9lChoBmgJaA9DCOqT3GETrHNAlIaUUpRoFU3oA2gWR0C95USwOe8PdX2UKGgGaAloD0MIxTh/E0puc0CUhpRSlGgVTegDaBZHQL3pjckdFOR1fZQoaAZoCWgPQwg+IqZE0kt0QJSGlFKUaBVN6ANoFkdAve3240/GEXV9lChoBmgJaA9DCCBB8WMMfHNAlIaUUpRoFU3oA2gWR0C98qqg7HQydX2UKGgGaAloD0MI6njMQGWfc0CUhpRSlGgVTegDaBZHQL33E/z8P4F1fZQoaAZoCWgPQwgNGY9Sidd6QJSGlFKUaBVN6ANoFkdAvftJMfzSTnV9lChoBmgJaA9DCCAJ+3aSgXNAlIaUUpRoFU3oA2gWR0C9/5GKhtcfdX2UKGgGaAloD0MIuaZAZqdDckCUhpRSlGgVTegDaBZHQL4EHewLVnV1fZQoaAZoCWgPQwjmyTUFsih4QJSGlFKUaBVN6ANoFkdAvggeVmjCYXV9lChoBmgJaA9DCAxbs5UXAXZAlIaUUpRoFU3oA2gWR0C+DC0MCtA+dX2UKGgGaAloD0MI7uwrD5KSdECUhpRSlGgVTegDaBZHQL4QLTs6aLJ1fZQoaAZoCWgPQwjJO4cylC13QJSGlFKUaBVN6ANoFkdAvhQ0ipvP1XV9lChoBmgJaA9DCFzjM9k/lnZAlIaUUpRoFU3oA2gWR0C+GEhdD6WPdX2UKGgGaAloD0MIpwUv+oqZdkCUhpRSlGgVTegDaBZHQL4cKG6PKdR1fZQoaAZoCWgPQwh6xOi5xcN1QJSGlFKUaBVN6ANoFkdAviBiw1R+B3V9lChoBmgJaA9DCIPb2sJzPXdAlIaUUpRoFU3oA2gWR0C+JRIXoC+2dX2UKGgGaAloD0MIz6J3KmCIc0CUhpRSlGgVTegDaBZHQL4paYnfEXN1fZQoaAZoCWgPQwiW7NgIBO15QJSGlFKUaBVN6ANoFkdAvi2mhg3Lm3V9lChoBmgJaA9DCOYF2EcnI3tAlIaUUpRoFU3oA2gWR0C+McsJ2MbWdX2UKGgGaAloD0MId/S/XAvZb0CUhpRSlGgVTegDaBZHQL43MJ7LMcJ1fZQoaAZoCWgPQwjNrRBWI5d9QJSGlFKUaBVN6ANoFkdAvjvy0svqT3V9lChoBmgJaA9DCBCVRswsd3ZAlIaUUpRoFU3oA2gWR0C+QCekDZDidX2UKGgGaAloD0MISUkPQ+uFdUCUhpRSlGgVTegDaBZHQL5Egld1Mdt1fZQoaAZoCWgPQwgZHvtZbOx1QJSGlFKUaBVN6ANoFkdAvkj8r3CbdHV9lChoBmgJaA9DCJ58emxLF25AlIaUUpRoFU3oA2gWR0C+U2USM98rdX2UKGgGaAloD0MIMsfyrvqrd0CUhpRSlGgVTegDaBZHQL5XpErXlKd1fZQoaAZoCWgPQwjVer/RTrN/QJSGlFKUaBVN6ANoFkdAvlvHyXlbNnV9lChoBmgJaA9DCGBa1Cf5j3VAlIaUUpRoFU3oA2gWR0C+X/a7VawEdX2UKGgGaAloD0MIjNmSVVHkdECUhpRSlGgVTegDaBZHQL5kJcY64lR1fZQoaAZoCWgPQwjXogVoG5ZzQJSGlFKUaBVN6ANoFkdAvmiOP7vXsnV9lChoBmgJaA9DCI8c6QwMR3VAlIaUUpRoFU3oA2gWR0C+bNx9gF5fdX2UKGgGaAloD0MISFD8GDPmdECUhpRSlGgVTegDaBZHQL5xSKfWcz91fZQoaAZoCWgPQwjQ0hVso1p5QJSGlFKUaBVN6ANoFkdAvnXVQgs9S3V9lChoBmgJaA9DCKX4+IRsm3dAlIaUUpRoFU3oA2gWR0C+eqRSUC7sdX2UKGgGaAloD0MIj20ZcFYleECUhpRSlGgVTegDaBZHQL5+/0a6z3R1fZQoaAZoCWgPQwi7l/vkKGV2QJSGlFKUaBVN6ANoFkdAvoQuTA31jHV9lChoBmgJaA9DCJFkVu/wZXlAlIaUUpRoFU3oA2gWR0C+iS/3vhIfdX2UKGgGaAloD0MICcGqerkAeECUhpRSlGgVTegDaBZHQL6N84bCJoF1fZQoaAZoCWgPQwir0EAs2zZ4QJSGlFKUaBVN6ANoFkdAvpK5EgGKRHV9lChoBmgJaA9DCNScvMhEv3dAlIaUUpRoFU3oA2gWR0C+lvfpljEvdX2UKGgGaAloD0MIMiJRaBnEd0CUhpRSlGgVTegDaBZHQL6bTBAv+Ox1fZQoaAZoCWgPQwhEbLBwEjByQJSGlFKUaBVN6ANoFkdAvp95aV2RrHV9lChoBmgJaA9DCP62J0isBXdAlIaUUpRoFU3oA2gWR0C+o9G5DqnndX2UKGgGaAloD0MIBaOSOsFFd0CUhpRSlGgVTegDaBZHQL6n7aYu01J1fZQoaAZoCWgPQwgPmIdMuT14QJSGlFKUaBVN6ANoFkdAvqv7KOktVnV9lChoBmgJaA9DCE7tDFNbZnlAlIaUUpRoFU3oA2gWR0C+sD7zoUzsdX2UKGgGaAloD0MISpnU0EaAc0CUhpRSlGgVTegDaBZHQL60kNTcZcd1fZQoaAZoCWgPQwgOoUrNnnl3QJSGlFKUaBVN6ANoFkdAvrnAxREWqXV9lChoBmgJaA9DCN3sD5SbOnRAlIaUUpRoFU3oA2gWR0C+vg16mfoSdWUu"
86
+ },
87
+ "ep_success_buffer": {
88
+ ":type:": "<class 'collections.deque'>",
89
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
90
+ },
91
+ "_n_updates": 247500,
92
+ "buffer_size": 1,
93
+ "batch_size": 64,
94
+ "learning_starts": 20000,
95
+ "tau": 0.08,
96
+ "gamma": 0.98,
97
+ "gradient_steps": 1,
98
+ "optimize_memory_usage": false,
99
+ "replay_buffer_class": {
100
+ ":type:": "<class 'abc.ABCMeta'>",
101
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
102
+ "__module__": "stable_baselines3.common.buffers",
103
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
104
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f2dfac64040>",
105
+ "add": "<function ReplayBuffer.add at 0x7f2dfac640d0>",
106
+ "sample": "<function ReplayBuffer.sample at 0x7f2dfac64160>",
107
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f2dfac641f0>",
108
+ "__abstractmethods__": "frozenset()",
109
+ "_abc_impl": "<_abc_data object at 0x7f2dface6810>"
110
+ },
111
+ "replay_buffer_kwargs": {},
112
+ "train_freq": {
113
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
114
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLCGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
115
+ },
116
+ "use_sde_at_warmup": false,
117
+ "target_entropy": -17.0,
118
+ "ent_coef": "auto",
119
+ "target_update_interval": 1
120
+ }
sac-seals-Humanoid-v0/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62aa2b860a83fe65ee88d14e810d8a36fcdf5a987085e55b51c33777de911244
3
+ size 1191
sac-seals-Humanoid-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:632c8d263ef4bbc8db30d2113351ead7350be5d99f1a1b2a1013861c348b778f
3
+ size 5602821
sac-seals-Humanoid-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:347698fdabe9f25b5de2bb2181d9110ffa5fdd88f25a5ea37e3c9ea0ce9c0e04
3
+ size 747
sac-seals-Humanoid-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-121-generic-x86_64-with-glibc2.29 #137-Ubuntu SMP Wed Jun 15 13:33:07 UTC 2022
2
+ Python: 3.8.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0+cu102
5
+ GPU Enabled: False
6
+ Numpy: 1.22.3
7
+ Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dd984d3ec4d7566df86c4e0c8da87f5be922d40b2fca895599885f0e2128791
3
+ size 65097