Initial commit
Browse files- .gitattributes +1 -0
- README.md +65 -0
- args.yml +75 -0
- config.yml +21 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- sac-seals-Humanoid-v0.zip +3 -0
- sac-seals-Humanoid-v0/_stable_baselines3_version +1 -0
- sac-seals-Humanoid-v0/actor.optimizer.pth +3 -0
- sac-seals-Humanoid-v0/critic.optimizer.pth +3 -0
- sac-seals-Humanoid-v0/data +120 -0
- sac-seals-Humanoid-v0/ent_coef_optimizer.pth +3 -0
- sac-seals-Humanoid-v0/policy.pth +3 -0
- sac-seals-Humanoid-v0/pytorch_variables.pth +3 -0
- sac-seals-Humanoid-v0/system_info.txt +7 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- seals/Humanoid-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: SAC
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -200.52 +/- 55.30
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: seals/Humanoid-v0
|
20 |
+
type: seals/Humanoid-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **SAC** Agent playing **seals/Humanoid-v0**
|
24 |
+
This is a trained model of a **SAC** agent playing **seals/Humanoid-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo sac --env seals/Humanoid-v0 -orga ernestumorga -f logs/
|
41 |
+
python enjoy.py --algo sac --env seals/Humanoid-v0 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo sac --env seals/Humanoid-v0 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo sac --env seals/Humanoid-v0 -f logs/ -orga ernestumorga
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('batch_size', 64),
|
54 |
+
('buffer_size', 100000),
|
55 |
+
('gamma', 0.98),
|
56 |
+
('learning_rate', 4.426351861707874e-05),
|
57 |
+
('learning_starts', 20000),
|
58 |
+
('n_timesteps', 2000000.0),
|
59 |
+
('policy', 'MlpPolicy'),
|
60 |
+
('policy_kwargs',
|
61 |
+
'dict(net_arch=[400, 300], log_std_init=-0.1034412732183072)'),
|
62 |
+
('tau', 0.08),
|
63 |
+
('train_freq', 8),
|
64 |
+
('normalize', False)])
|
65 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- sac
|
4 |
+
- - device
|
5 |
+
- cpu
|
6 |
+
- - env
|
7 |
+
- seals/Humanoid-v0
|
8 |
+
- - env_kwargs
|
9 |
+
- null
|
10 |
+
- - eval_episodes
|
11 |
+
- 5
|
12 |
+
- - eval_freq
|
13 |
+
- 25000
|
14 |
+
- - gym_packages
|
15 |
+
- []
|
16 |
+
- - hyperparams
|
17 |
+
- null
|
18 |
+
- - log_folder
|
19 |
+
- seals_experts
|
20 |
+
- - log_interval
|
21 |
+
- -1
|
22 |
+
- - n_eval_envs
|
23 |
+
- 1
|
24 |
+
- - n_evaluations
|
25 |
+
- null
|
26 |
+
- - n_jobs
|
27 |
+
- 1
|
28 |
+
- - n_startup_trials
|
29 |
+
- 10
|
30 |
+
- - n_timesteps
|
31 |
+
- -1
|
32 |
+
- - n_trials
|
33 |
+
- 500
|
34 |
+
- - no_optim_plots
|
35 |
+
- false
|
36 |
+
- - num_threads
|
37 |
+
- 4
|
38 |
+
- - optimization_log_path
|
39 |
+
- null
|
40 |
+
- - optimize_hyperparameters
|
41 |
+
- false
|
42 |
+
- - pruner
|
43 |
+
- median
|
44 |
+
- - sampler
|
45 |
+
- tpe
|
46 |
+
- - save_freq
|
47 |
+
- -1
|
48 |
+
- - save_replay_buffer
|
49 |
+
- false
|
50 |
+
- - seed
|
51 |
+
- 175967158
|
52 |
+
- - storage
|
53 |
+
- null
|
54 |
+
- - study_name
|
55 |
+
- null
|
56 |
+
- - tensorboard_log
|
57 |
+
- ''
|
58 |
+
- - total_n_trials
|
59 |
+
- null
|
60 |
+
- - track
|
61 |
+
- false
|
62 |
+
- - trained_agent
|
63 |
+
- ''
|
64 |
+
- - truncate_last_trajectory
|
65 |
+
- true
|
66 |
+
- - uuid
|
67 |
+
- false
|
68 |
+
- - vec_env
|
69 |
+
- dummy
|
70 |
+
- - verbose
|
71 |
+
- 1
|
72 |
+
- - wandb_entity
|
73 |
+
- null
|
74 |
+
- - wandb_project_name
|
75 |
+
- sb3
|
config.yml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 64
|
4 |
+
- - buffer_size
|
5 |
+
- 100000
|
6 |
+
- - gamma
|
7 |
+
- 0.98
|
8 |
+
- - learning_rate
|
9 |
+
- 4.426351861707874e-05
|
10 |
+
- - learning_starts
|
11 |
+
- 20000
|
12 |
+
- - n_timesteps
|
13 |
+
- 2000000.0
|
14 |
+
- - policy
|
15 |
+
- MlpPolicy
|
16 |
+
- - policy_kwargs
|
17 |
+
- dict(net_arch=[400, 300], log_std_init=-0.1034412732183072)
|
18 |
+
- - tau
|
19 |
+
- 0.08
|
20 |
+
- - train_freq
|
21 |
+
- 8
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d44bb3b706addf9b16776a5c68b1f312e12bdcb21ed411312260017980a5e1b4
|
3 |
+
size 903077
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -200.52407769999996, "std_reward": 55.302160982182905, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-11T14:39:10.951354"}
|
sac-seals-Humanoid-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81529a1b07cf73170a1f2e5d8f63d2397b28b7c8d516f7bd71b1ef7288c37506
|
3 |
+
size 12378435
|
sac-seals-Humanoid-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
sac-seals-Humanoid-v0/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d84e547d9fe11864acaa0bbb972848587d50f4ddb2990a40a27bdf41338e93d
|
3 |
+
size 2261237
|
sac-seals-Humanoid-v0/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:362436b69608bbc7a882f0501647b4c1f11eb0a0cc7c34e35d8a197ebd823a0c
|
3 |
+
size 4470173
|
sac-seals-Humanoid-v0/data
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.sac.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function SACPolicy.__init__ at 0x7f2dfac0ce50>",
|
8 |
+
"_build": "<function SACPolicy._build at 0x7f2dfac0cee0>",
|
9 |
+
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f2dfac0cf70>",
|
10 |
+
"reset_noise": "<function SACPolicy.reset_noise at 0x7f2dfac17040>",
|
11 |
+
"make_actor": "<function SACPolicy.make_actor at 0x7f2dfac170d0>",
|
12 |
+
"make_critic": "<function SACPolicy.make_critic at 0x7f2dfac17160>",
|
13 |
+
"forward": "<function SACPolicy.forward at 0x7f2dfac171f0>",
|
14 |
+
"_predict": "<function SACPolicy._predict at 0x7f2dfac17280>",
|
15 |
+
"set_training_mode": "<function SACPolicy.set_training_mode at 0x7f2dfac17310>",
|
16 |
+
"__abstractmethods__": "frozenset()",
|
17 |
+
"_abc_impl": "<_abc_data object at 0x7f2dfac0bc90>"
|
18 |
+
},
|
19 |
+
"verbose": 1,
|
20 |
+
"policy_kwargs": {
|
21 |
+
"net_arch": [
|
22 |
+
400,
|
23 |
+
300
|
24 |
+
],
|
25 |
+
"log_std_init": -0.1034412732183072,
|
26 |
+
"use_sde": false
|
27 |
+
},
|
28 |
+
"observation_space": {
|
29 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
30 |
+
":serialized:": "gAWV6BsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRNegGFlIwDbG93lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoltALAAAAAAAAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKTXoBhZSMAUOUdJRSlIwEaGlnaJRoEiiW0AsAAAAAAAAAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApNegGFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWegEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJNegGFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWegEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFNegGFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
31 |
+
"dtype": "float64",
|
32 |
+
"_shape": [
|
33 |
+
378
|
34 |
+
],
|
35 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
36 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
|
37 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False]",
|
38 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False]",
|
39 |
+
"_np_random": null
|
40 |
+
},
|
41 |
+
"action_space": {
|
42 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
43 |
+
":serialized:": "gAWVgQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWRAAAAAAAAADNzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvpRoCksRhZSMAUOUdJRSlIwEaGlnaJRoEiiWRAAAAAAAAADNzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPpRoCksRhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolhEAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLEYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYRAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBlGghSxGFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
44 |
+
"dtype": "float32",
|
45 |
+
"_shape": [
|
46 |
+
17
|
47 |
+
],
|
48 |
+
"low": "[-0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4\n -0.4 -0.4 -0.4]",
|
49 |
+
"high": "[0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4]",
|
50 |
+
"bounded_below": "[ True True True True True True True True True True True True\n True True True True True]",
|
51 |
+
"bounded_above": "[ True True True True True True True True True True True True\n True True True True True]",
|
52 |
+
"_np_random": "RandomState(MT19937)"
|
53 |
+
},
|
54 |
+
"n_envs": 1,
|
55 |
+
"num_timesteps": 2000000,
|
56 |
+
"_total_timesteps": 2000000,
|
57 |
+
"_num_timesteps_at_start": 0,
|
58 |
+
"seed": 0,
|
59 |
+
"action_noise": null,
|
60 |
+
"start_time": 1651241344.1712685,
|
61 |
+
"learning_rate": {
|
62 |
+
":type:": "<class 'function'>",
|
63 |
+
":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8HNPLrPv3NhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
64 |
+
},
|
65 |
+
"tensorboard_log": null,
|
66 |
+
"lr_schedule": {
|
67 |
+
":type:": "<class 'function'>",
|
68 |
+
":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8HNPLrPv3NhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
69 |
+
},
|
70 |
+
"_last_obs": null,
|
71 |
+
"_last_episode_starts": {
|
72 |
+
":type:": "<class 'numpy.ndarray'>",
|
73 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
74 |
+
},
|
75 |
+
"_last_original_obs": {
|
76 |
+
":type:": "<class 'numpy.ndarray'>",
|
77 |
+
":serialized:": "gAWVRgwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbQCwAAAAAAAC7rJ6CCMfc/D3HgXT6ZtL/qjulOFHbAP2kx2FPDMd6/QCWHo3Va4j9H4l3ApZbAP8Z9UPJGBuU/V6q2V9416b8xO2E6Y2rtv81bqzKSm+O/wH2Q6D/L2r9n/3ekMNXwvwP5VUQUB/+/Mgs1pYyNBsBiw00wrxG3P39NbmxR8uM/RKytOTP0/r/YVExA0Pp+v3D19gAu/Ou/fHn+IdKG9b9WrxvuBGz2v0urtdFvzPc/kKh1oqIqvz/BOGKrXTj5vwb7/UgrqaQ/yfGvl2p2mD8wzk0Uhzmjv12Lcuf0qs2/wQRg+jV90r9cXrshGOdwP3eNZCaVvqi/ABC5WMg/3j8gnype2V9pP3nih+nkmLu/qD3Nek+Rv78L84KNVpmxP7WBXjkjSas/YPUNpCvylr+v/nH3RF/NP3sZuG9ds6q/HO4kxcQqk7+0yiaeHADSP0Zf3kWK/tM/CIs/Kess5b8N72wdNX25v/SjtSzEtdm/qMbypZZchD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOsT+7Zj0Lo/SL+ry35Y1D+AsolXC53XP/GqNdV1BbO/MqzCrOUSh7/TBZRn1uGev9hq2z3AyfU/k4WBfxoPwj+SzizPQpyyv8OO3ofnpCBAQB3rYZaosj9aZtz3DuGMP8yKK/1w+bE/vWOTpoz1hb++U6ETJUNzv3/9pOnQwJK/2NYxZkM3sr+2crxwiofWvzWsi1LBery//T2EXThJAEBHfxvZ0AHSP3YdFYr1vM0/9JkfTAqP3j/A5FhGHz/Mv3uzpdZPe5G//bXXltlhh7+qquf8AWnxv95G9w8QD/O/p5zo5Eu1tr8cGW4GQWkXQAQIoBTvDK4/MGeh8RxevD+7TR+fwA6+P/grEQ4IwZa/G5Mu/2MPnr++ySMvsg6AP4ZgJ6JoWd+/7h2aIp2Fqj861i8/vODTv3vwbGsrGhJA6NnMoeAJpj+IGe7s0RGyP9Z6P7/ZWbQ/S2mB9JG2jj/kzYDw5FmUvw6PZF4LwZI/jvyZI6aT0r8nAgZJI/TMP0C1V7yFo8m/b7tbPFkPBUBtEn0QcqiDP75mzYywCMQ/nGUi8m9Rwz/eEHzYbmBYv4vkwHqRZJ2/VghPgmsMM79yiSYcTU7gv1pH8+RyInW/e18/8cp7ub+7ssy+Okb8P+6DEs+FBsU/jB9k+J23wT/oH+rJ41vKP09cj9eAlri/pEIw+B6bqT9YPCFELl6oPxfb6DebG+K/v81kOb5O4r8UBON7iyHcP3vwbGsrGhJAQOOjKFreyD9+3fbX9IG5Px3Ybbhg58E/lm8Y5ei9qL+s0TN94gmiv8BAy+cC9ra/BeaniSnZyD9wx91zQUbgP2RwQl9XVdw/b7tbPFkPBUBMlVFDecfTP1HmKD09Y8E/fY0Xmctv0j+zTRuu/NK8v8Zf9hXuqbC/b/l3m47rwL9FZ1v2bQjUP/mbf0RTV+Q/fy0/WeeE1z+7ssy+Okb8PzI1m/0126s/A5SuMVlTkj8Lom3aTGqwPzLs1Rdf5JQ/+lxP50mxd799uskGOBV0P1WNuwr7h7i/jDR0hfyl0T8My9cO9aOLv2z8deREgfk/UAv9Cbm+wz+uU3FLHk/GP85fbf2VWdM/ThhSl70xwz91q1qOv7qmv7ZrCoCrk6U/0K4ckwtO27+4yMaqO/7ZP9kN1454rr+/w96z2Gks8z/94kHsyiOSP4IwrdZ+uNU/cjLU5SpC1T+ysjniEzKjP9WV0UmHyq8/GrIae35+fb82zydPnKLmP0ZToXRb5rW/blPGD55Zwb9s/HXkRIH5Pxwrf4vl3IM/ADq9q0lO6T/zyZtQERrpPxW3VJRlQ58/6KKIi/O6sj9YOBopR3xqvyYa9R/DwO4/oQBs62ISpL98nwQU3ga4v8Pes9hpLPM/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWZ3C/hMmz7/nkcrqkNHQP4f9TePYN7i//ta7Qr7Zpz+ZTBF+vE+lP8DW6nbOs3G/IGCVnZZAkj+MK3ZJiDq6vx7scD78La8//GdNTs5Sgb+DjwmkkcWQP/qUyyH+hJ0/hhC84sTykj9YJbmZS8K5v23VVDBJNLA/00SYkvE4gr/aptrbvfaQP/F4/uH9f50//g5MxQvZvb+YUBPHZba6v/zbQh4Lo6U/oCU6IQXee79UpsuCjgSTP5pw1BVqu44/JvngV9M0vr8dy0p8Wfy8v/yLmUyHFYW/zP+GuO1/kL9v3kcxGF2VPxcsDWaJco4/JvngV9M0vr8dy0p8Wfy8v/yLmUyHFYW/zP+GuO1/kL9v3kcxGF2VPxcsDWaJco4/6BFmf/Rpyr9qqNhb3Wujv8xk43wilLE/iql/TcP0jb8cIWUM+SdjP9PZkdRPDae/XbFUWQ0kyr9EiUvUQEamv2HUQixbIbY/lCWKBsKKir/QX5M3J5BnP5nj0NRtEae/XbFUWQ0kyr9EiUvUQEamv2HUQixbIbY/lCWKBsKKir/QX5M3J5BnP5nj0NRtEae/gEjjdh7fuT/tw3T6MVPcP0JgRDrw1rA/8XavwSbRqz/JWq3w3pasP/eJfWeQ46K/2MhFfF1zzr/MftHprgm/v7nklz4dh8E/6gc4gLwYkT+8S1PVKzu6P5ZPZ7oPn8M/PC49OCyjzL8mtu7lrN3Cv2d0gpr9wcK/ldDG+KAfmD+WgabC+9WsP9D8FcZghcC/4zj7QvSQzL8Rt3GPYiHEv/PEORzgm8K/GvLok5nvlj/24jgXHHCsP9wVqqSDS8G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnSfAQcAAAAAUVqM/wAAAAGQBwT/AAAAAgHamEsAAAADPT1pDwAAAgMAugl3AAAAAtQ4hUcAAAADehK81QAAAAPZ96TpAAACA1spmXcAAAACLiI9RQAAAAACz5du/AAAAF1tSI8AAAAAlJSMgwAAAAKBjeuM/AAAAwG/RB8AAAABbGYIjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAU16AYaUjAFDlHSUUpQu"
|
78 |
+
},
|
79 |
+
"_episode_num": 2000,
|
80 |
+
"use_sde": false,
|
81 |
+
"sde_sample_freq": -1,
|
82 |
+
"_current_progress_remaining": 0.0,
|
83 |
+
"ep_info_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImfViKCcDdUCUhpRSlIwBbJRN6AOMAXSUR0C8/ZhKtga4dX2UKGgGaAloD0MIWhKgplbgdECUhpRSlGgVTegDaBZHQL0CAOJ+Dvp1fZQoaAZoCWgPQwhhNgGGJW9yQJSGlFKUaBVN6ANoFkdAvQaYGLUCrHV9lChoBmgJaA9DCIpbBTEQpHFAlIaUUpRoFU3oA2gWR0C9CuPJq7AddX2UKGgGaAloD0MIU5eMY+SBcUCUhpRSlGgVTegDaBZHQL0O83yqdYp1fZQoaAZoCWgPQwgLmpZY2WFxQJSGlFKUaBVN6ANoFkdAvRMse2d/a3V9lChoBmgJaA9DCHdoWIy6UXJAlIaUUpRoFU3oA2gWR0C9F0XhfjS5dX2UKGgGaAloD0MIqDej5qvRcUCUhpRSlGgVTegDaBZHQL0bU2a2F391fZQoaAZoCWgPQwhQxY1bDIh2QJSGlFKUaBVN6ANoFkdAvSASMMqjJ3V9lChoBmgJaA9DCBkAqrix2XFAlIaUUpRoFU3oA2gWR0C9JOMG9pRGdX2UKGgGaAloD0MI220XmuuNcUCUhpRSlGgVTegDaBZHQL0pTyIpH7R1fZQoaAZoCWgPQwjgTbfskH1yQJSGlFKUaBVN6ANoFkdAvS17rv9cbHV9lChoBmgJaA9DCFfrxOW4q3BAlIaUUpRoFU3oA2gWR0C9MhmD15B1dX2UKGgGaAloD0MIvt2SHDAKdkCUhpRSlGgVTegDaBZHQL02X2YOUdJ1fZQoaAZoCWgPQwhMNh5s8R53QJSGlFKUaBVN6ANoFkdAvTqslt0mt3V9lChoBmgJaA9DCE+RQ8TN221AlIaUUpRoFU3oA2gWR0C9PzFymygPdX2UKGgGaAloD0MIP+WYLK5acECUhpRSlGgVTegDaBZHQL1DRF2FFlV1fZQoaAZoCWgPQwg6kWCqGTVwQJSGlFKUaBVN6ANoFkdAvUdLPgNwznV9lChoBmgJaA9DCFwhrMbSlXJAlIaUUpRoFU3oA2gWR0C9S3gCwKSgdX2UKGgGaAloD0MIptB5jV3ZcUCUhpRSlGgVTegDaBZHQL1P4kq+ajN1fZQoaAZoCWgPQwhuopbmlld0QJSGlFKUaBVN6ANoFkdAvVQaAhB7eHV9lChoBmgJaA9DCPksz4N7znZAlIaUUpRoFU3oA2gWR0C9WCtJrcj8dX2UKGgGaAloD0MIMunvpfAcb0CUhpRSlGgVTegDaBZHQL1cXJaaCtl1fZQoaAZoCWgPQwiojH+fcS9sQJSGlFKUaBVN6ANoFkdAvWBip97Wu3V9lChoBmgJaA9DCNi8qrPaAGtAlIaUUpRoFU3oA2gWR0C9ZFCEL6UJdX2UKGgGaAloD0MITFDDt7Dcc0CUhpRSlGgVTegDaBZHQL1vlgLqlgt1fZQoaAZoCWgPQwjP86eNqrB1QJSGlFKUaBVN6ANoFkdAvXRcQAdXDHV9lChoBmgJaA9DCIMwt3s5Z3tAlIaUUpRoFU3oA2gWR0C9eHPCQ9zPdX2UKGgGaAloD0MIL7/TZEagdkCUhpRSlGgVTegDaBZHQL18mzlcQiB1fZQoaAZoCWgPQwh5kQn4tZlyQJSGlFKUaBVN6ANoFkdAvYCTTLGJenV9lChoBmgJaA9DCMl06PQ8BXhAlIaUUpRoFU3oA2gWR0C9hGi9IwuedX2UKGgGaAloD0MIgzEiUajNckCUhpRSlGgVTegDaBZHQL2IZFLnLaF1fZQoaAZoCWgPQwgn2lVIOUp5QJSGlFKUaBVN6ANoFkdAvYzeFXaJynV9lChoBmgJaA9DCGa8rfQaWHhAlIaUUpRoFU3oA2gWR0C9kU03fhuPdX2UKGgGaAloD0MINbitLXwxcUCUhpRSlGgVTegDaBZHQL2VPwUQCjl1fZQoaAZoCWgPQwjK+ziaI8J0QJSGlFKUaBVN6ANoFkdAvZkcsYl6aHV9lChoBmgJaA9DCOjc7XopJXdAlIaUUpRoFU3oA2gWR0C9nQP/NqxkdX2UKGgGaAloD0MIsJKP3YXsdUCUhpRSlGgVTegDaBZHQL2hB78ejmF1fZQoaAZoCWgPQwiQhegQOAlyQJSGlFKUaBVN6ANoFkdAvaU2DaoMrnV9lChoBmgJaA9DCHCaPjtg5HJAlIaUUpRoFU3oA2gWR0C9qRtWhh6TdX2UKGgGaAloD0MI/5Hp0Ck8ckCUhpRSlGgVTegDaBZHQL2ttFOO8011fZQoaAZoCWgPQwiSk4lbRVx2QJSGlFKUaBVN6ANoFkdAvbI6xzJZGXV9lChoBmgJaA9DCJyHE5hOznVAlIaUUpRoFU3oA2gWR0C9txXEhq0udX2UKGgGaAloD0MI3QvMCsXPdUCUhpRSlGgVTegDaBZHQL27uiEg4fh1fZQoaAZoCWgPQwjCbAIMS9F0QJSGlFKUaBVN6ANoFkdAvcCcEC/47HV9lChoBmgJaA9DCHjxftw+B3hAlIaUUpRoFU3oA2gWR0C9xTAeii7DdX2UKGgGaAloD0MIKLhYUUOLd0CUhpRSlGgVTegDaBZHQL3JRwH7gsN1fZQoaAZoCWgPQwiYpghw+hJ0QJSGlFKUaBVN6ANoFkdAvc2AG6f8M3V9lChoBmgJaA9DCNEksaScBHpAlIaUUpRoFU3oA2gWR0C90c/ZqVQidX2UKGgGaAloD0MI5bUSuov7eECUhpRSlGgVTegDaBZHQL3WOSMLncN1fZQoaAZoCWgPQwiZ2HxcW+pxQJSGlFKUaBVN6ANoFkdAveEtR8+ianV9lChoBmgJaA9DCOqT3GETrHNAlIaUUpRoFU3oA2gWR0C95USwOe8PdX2UKGgGaAloD0MIxTh/E0puc0CUhpRSlGgVTegDaBZHQL3pjckdFOR1fZQoaAZoCWgPQwg+IqZE0kt0QJSGlFKUaBVN6ANoFkdAve3240/GEXV9lChoBmgJaA9DCCBB8WMMfHNAlIaUUpRoFU3oA2gWR0C98qqg7HQydX2UKGgGaAloD0MI6njMQGWfc0CUhpRSlGgVTegDaBZHQL33E/z8P4F1fZQoaAZoCWgPQwgNGY9Sidd6QJSGlFKUaBVN6ANoFkdAvftJMfzSTnV9lChoBmgJaA9DCCAJ+3aSgXNAlIaUUpRoFU3oA2gWR0C9/5GKhtcfdX2UKGgGaAloD0MIuaZAZqdDckCUhpRSlGgVTegDaBZHQL4EHewLVnV1fZQoaAZoCWgPQwjmyTUFsih4QJSGlFKUaBVN6ANoFkdAvggeVmjCYXV9lChoBmgJaA9DCAxbs5UXAXZAlIaUUpRoFU3oA2gWR0C+DC0MCtA+dX2UKGgGaAloD0MI7uwrD5KSdECUhpRSlGgVTegDaBZHQL4QLTs6aLJ1fZQoaAZoCWgPQwjJO4cylC13QJSGlFKUaBVN6ANoFkdAvhQ0ipvP1XV9lChoBmgJaA9DCFzjM9k/lnZAlIaUUpRoFU3oA2gWR0C+GEhdD6WPdX2UKGgGaAloD0MIpwUv+oqZdkCUhpRSlGgVTegDaBZHQL4cKG6PKdR1fZQoaAZoCWgPQwh6xOi5xcN1QJSGlFKUaBVN6ANoFkdAviBiw1R+B3V9lChoBmgJaA9DCIPb2sJzPXdAlIaUUpRoFU3oA2gWR0C+JRIXoC+2dX2UKGgGaAloD0MIz6J3KmCIc0CUhpRSlGgVTegDaBZHQL4paYnfEXN1fZQoaAZoCWgPQwiW7NgIBO15QJSGlFKUaBVN6ANoFkdAvi2mhg3Lm3V9lChoBmgJaA9DCOYF2EcnI3tAlIaUUpRoFU3oA2gWR0C+McsJ2MbWdX2UKGgGaAloD0MId/S/XAvZb0CUhpRSlGgVTegDaBZHQL43MJ7LMcJ1fZQoaAZoCWgPQwjNrRBWI5d9QJSGlFKUaBVN6ANoFkdAvjvy0svqT3V9lChoBmgJaA9DCBCVRswsd3ZAlIaUUpRoFU3oA2gWR0C+QCekDZDidX2UKGgGaAloD0MISUkPQ+uFdUCUhpRSlGgVTegDaBZHQL5Egld1Mdt1fZQoaAZoCWgPQwgZHvtZbOx1QJSGlFKUaBVN6ANoFkdAvkj8r3CbdHV9lChoBmgJaA9DCJ58emxLF25AlIaUUpRoFU3oA2gWR0C+U2USM98rdX2UKGgGaAloD0MIMsfyrvqrd0CUhpRSlGgVTegDaBZHQL5XpErXlKd1fZQoaAZoCWgPQwjVer/RTrN/QJSGlFKUaBVN6ANoFkdAvlvHyXlbNnV9lChoBmgJaA9DCGBa1Cf5j3VAlIaUUpRoFU3oA2gWR0C+X/a7VawEdX2UKGgGaAloD0MIjNmSVVHkdECUhpRSlGgVTegDaBZHQL5kJcY64lR1fZQoaAZoCWgPQwjXogVoG5ZzQJSGlFKUaBVN6ANoFkdAvmiOP7vXsnV9lChoBmgJaA9DCI8c6QwMR3VAlIaUUpRoFU3oA2gWR0C+bNx9gF5fdX2UKGgGaAloD0MISFD8GDPmdECUhpRSlGgVTegDaBZHQL5xSKfWcz91fZQoaAZoCWgPQwjQ0hVso1p5QJSGlFKUaBVN6ANoFkdAvnXVQgs9S3V9lChoBmgJaA9DCKX4+IRsm3dAlIaUUpRoFU3oA2gWR0C+eqRSUC7sdX2UKGgGaAloD0MIj20ZcFYleECUhpRSlGgVTegDaBZHQL5+/0a6z3R1fZQoaAZoCWgPQwi7l/vkKGV2QJSGlFKUaBVN6ANoFkdAvoQuTA31jHV9lChoBmgJaA9DCJFkVu/wZXlAlIaUUpRoFU3oA2gWR0C+iS/3vhIfdX2UKGgGaAloD0MICcGqerkAeECUhpRSlGgVTegDaBZHQL6N84bCJoF1fZQoaAZoCWgPQwir0EAs2zZ4QJSGlFKUaBVN6ANoFkdAvpK5EgGKRHV9lChoBmgJaA9DCNScvMhEv3dAlIaUUpRoFU3oA2gWR0C+lvfpljEvdX2UKGgGaAloD0MIMiJRaBnEd0CUhpRSlGgVTegDaBZHQL6bTBAv+Ox1fZQoaAZoCWgPQwhEbLBwEjByQJSGlFKUaBVN6ANoFkdAvp95aV2RrHV9lChoBmgJaA9DCP62J0isBXdAlIaUUpRoFU3oA2gWR0C+o9G5DqnndX2UKGgGaAloD0MIBaOSOsFFd0CUhpRSlGgVTegDaBZHQL6n7aYu01J1fZQoaAZoCWgPQwgPmIdMuT14QJSGlFKUaBVN6ANoFkdAvqv7KOktVnV9lChoBmgJaA9DCE7tDFNbZnlAlIaUUpRoFU3oA2gWR0C+sD7zoUzsdX2UKGgGaAloD0MISpnU0EaAc0CUhpRSlGgVTegDaBZHQL60kNTcZcd1fZQoaAZoCWgPQwgOoUrNnnl3QJSGlFKUaBVN6ANoFkdAvrnAxREWqXV9lChoBmgJaA9DCN3sD5SbOnRAlIaUUpRoFU3oA2gWR0C+vg16mfoSdWUu"
|
86 |
+
},
|
87 |
+
"ep_success_buffer": {
|
88 |
+
":type:": "<class 'collections.deque'>",
|
89 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
90 |
+
},
|
91 |
+
"_n_updates": 247500,
|
92 |
+
"buffer_size": 1,
|
93 |
+
"batch_size": 64,
|
94 |
+
"learning_starts": 20000,
|
95 |
+
"tau": 0.08,
|
96 |
+
"gamma": 0.98,
|
97 |
+
"gradient_steps": 1,
|
98 |
+
"optimize_memory_usage": false,
|
99 |
+
"replay_buffer_class": {
|
100 |
+
":type:": "<class 'abc.ABCMeta'>",
|
101 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
102 |
+
"__module__": "stable_baselines3.common.buffers",
|
103 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
104 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f2dfac64040>",
|
105 |
+
"add": "<function ReplayBuffer.add at 0x7f2dfac640d0>",
|
106 |
+
"sample": "<function ReplayBuffer.sample at 0x7f2dfac64160>",
|
107 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f2dfac641f0>",
|
108 |
+
"__abstractmethods__": "frozenset()",
|
109 |
+
"_abc_impl": "<_abc_data object at 0x7f2dface6810>"
|
110 |
+
},
|
111 |
+
"replay_buffer_kwargs": {},
|
112 |
+
"train_freq": {
|
113 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
114 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLCGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
115 |
+
},
|
116 |
+
"use_sde_at_warmup": false,
|
117 |
+
"target_entropy": -17.0,
|
118 |
+
"ent_coef": "auto",
|
119 |
+
"target_update_interval": 1
|
120 |
+
}
|
sac-seals-Humanoid-v0/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62aa2b860a83fe65ee88d14e810d8a36fcdf5a987085e55b51c33777de911244
|
3 |
+
size 1191
|
sac-seals-Humanoid-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:632c8d263ef4bbc8db30d2113351ead7350be5d99f1a1b2a1013861c348b778f
|
3 |
+
size 5602821
|
sac-seals-Humanoid-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:347698fdabe9f25b5de2bb2181d9110ffa5fdd88f25a5ea37e3c9ea0ce9c0e04
|
3 |
+
size 747
|
sac-seals-Humanoid-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-121-generic-x86_64-with-glibc2.29 #137-Ubuntu SMP Wed Jun 15 13:33:07 UTC 2022
|
2 |
+
Python: 3.8.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0+cu102
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.22.3
|
7 |
+
Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0dd984d3ec4d7566df86c4e0c8da87f5be922d40b2fca895599885f0e2128791
|
3 |
+
size 65097
|