ernestum commited on
Commit
a565703
1 Parent(s): 3de0726

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - seals/Walker2d-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 2271.04 +/- 496.40
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: seals/Walker2d-v0
20
+ type: seals/Walker2d-v0
21
+ ---
22
+
23
+ # **SAC** Agent playing **seals/Walker2d-v0**
24
+ This is a trained model of a **SAC** agent playing **seals/Walker2d-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo sac --env seals/Walker2d-v0 -orga ernestumorga -f logs/
41
+ python enjoy.py --algo sac --env seals/Walker2d-v0 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo sac --env seals/Walker2d-v0 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo sac --env seals/Walker2d-v0 -f logs/ -orga ernestumorga
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('batch_size', 128),
54
+ ('buffer_size', 100000),
55
+ ('gamma', 0.99),
56
+ ('learning_rate', 0.0005845844772048097),
57
+ ('learning_starts', 1000),
58
+ ('n_timesteps', 1000000.0),
59
+ ('policy', 'MlpPolicy'),
60
+ ('policy_kwargs',
61
+ 'dict(net_arch=[400, 300], log_std_init=0.1955317469998743)'),
62
+ ('tau', 0.02),
63
+ ('train_freq', 1),
64
+ ('normalize', False)])
65
+ ```
args.yml ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - sac
4
+ - - device
5
+ - cpu
6
+ - - env
7
+ - seals/Walker2d-v0
8
+ - - env_kwargs
9
+ - null
10
+ - - eval_episodes
11
+ - 5
12
+ - - eval_freq
13
+ - 25000
14
+ - - gym_packages
15
+ - []
16
+ - - hyperparams
17
+ - null
18
+ - - log_folder
19
+ - seals_experts
20
+ - - log_interval
21
+ - -1
22
+ - - n_eval_envs
23
+ - 1
24
+ - - n_evaluations
25
+ - null
26
+ - - n_jobs
27
+ - 1
28
+ - - n_startup_trials
29
+ - 10
30
+ - - n_timesteps
31
+ - -1
32
+ - - n_trials
33
+ - 500
34
+ - - no_optim_plots
35
+ - false
36
+ - - num_threads
37
+ - 4
38
+ - - optimization_log_path
39
+ - null
40
+ - - optimize_hyperparameters
41
+ - false
42
+ - - pruner
43
+ - median
44
+ - - sampler
45
+ - tpe
46
+ - - save_freq
47
+ - -1
48
+ - - save_replay_buffer
49
+ - false
50
+ - - seed
51
+ - 4294322045
52
+ - - storage
53
+ - null
54
+ - - study_name
55
+ - null
56
+ - - tensorboard_log
57
+ - ''
58
+ - - total_n_trials
59
+ - null
60
+ - - track
61
+ - false
62
+ - - trained_agent
63
+ - ''
64
+ - - truncate_last_trajectory
65
+ - true
66
+ - - uuid
67
+ - false
68
+ - - vec_env
69
+ - dummy
70
+ - - verbose
71
+ - 1
72
+ - - wandb_entity
73
+ - null
74
+ - - wandb_project_name
75
+ - sb3
config.yml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 128
4
+ - - buffer_size
5
+ - 100000
6
+ - - gamma
7
+ - 0.99
8
+ - - learning_rate
9
+ - 0.0005845844772048097
10
+ - - learning_starts
11
+ - 1000
12
+ - - n_timesteps
13
+ - 1000000.0
14
+ - - policy
15
+ - MlpPolicy
16
+ - - policy_kwargs
17
+ - dict(net_arch=[400, 300], log_std_init=0.1955317469998743)
18
+ - - tau
19
+ - 0.02
20
+ - - train_freq
21
+ - 1
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91f0ab68de1f3d3d9a0db27d973f81af7f9d837479cd95f57ebb8bd42697877e
3
+ size 1339160
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2271.0352822, "std_reward": 496.3968423991559, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-11T14:33:24.793782"}
sac-seals-Walker2d-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5af4325d09db0200ab057314517dff9ef2bc014ba30378a545f239d853b8257e
3
+ size 5801427
sac-seals-Walker2d-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
sac-seals-Walker2d-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2a697b3da93a10c45d907fda5f4490445076466c2b5f8ac6a895c6edb15e3b9
3
+ size 1056245
sac-seals-Walker2d-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d23a9fb6bb3d39fd716bf95db5b0e02f0c5a1deaf4c7ed26df1cb5f410bb246
3
+ size 2095773
sac-seals-Walker2d-v0/data ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function SACPolicy.__init__ at 0x7fd18c480e50>",
8
+ "_build": "<function SACPolicy._build at 0x7fd18c480ee0>",
9
+ "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7fd18c480f70>",
10
+ "reset_noise": "<function SACPolicy.reset_noise at 0x7fd18c48b040>",
11
+ "make_actor": "<function SACPolicy.make_actor at 0x7fd18c48b0d0>",
12
+ "make_critic": "<function SACPolicy.make_critic at 0x7fd18c48b160>",
13
+ "forward": "<function SACPolicy.forward at 0x7fd18c48b1f0>",
14
+ "_predict": "<function SACPolicy._predict at 0x7fd18c48b280>",
15
+ "set_training_mode": "<function SACPolicy.set_training_mode at 0x7fd18c48b310>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc_data object at 0x7fd18c47fc90>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "net_arch": [
22
+ 400,
23
+ 300
24
+ ],
25
+ "log_std_init": 0.1955317469998743,
26
+ "use_sde": false
27
+ },
28
+ "observation_space": {
29
+ ":type:": "<class 'gym.spaces.box.Box'>",
30
+ ":serialized:": "gAWVkwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWkAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaApLEoWUjAFDlHSUUpSMBGhpZ2iUaBIolpAAAAAAAAAAAAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lGgKSxKFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLEoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsShZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
31
+ "dtype": "float64",
32
+ "_shape": [
33
+ 18
34
+ ],
35
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf]",
36
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
37
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False]",
38
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False]",
39
+ "_np_random": null
40
+ },
41
+ "action_space": {
42
+ ":type:": "<class 'gym.spaces.box.Box'>",
43
+ ":serialized:": "gAWVEwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
44
+ "dtype": "float32",
45
+ "_shape": [
46
+ 6
47
+ ],
48
+ "low": "[-1. -1. -1. -1. -1. -1.]",
49
+ "high": "[1. 1. 1. 1. 1. 1.]",
50
+ "bounded_below": "[ True True True True True True]",
51
+ "bounded_above": "[ True True True True True True]",
52
+ "_np_random": "RandomState(MT19937)"
53
+ },
54
+ "n_envs": 1,
55
+ "num_timesteps": 1000000,
56
+ "_total_timesteps": 1000000,
57
+ "_num_timesteps_at_start": 0,
58
+ "seed": 0,
59
+ "action_noise": null,
60
+ "start_time": 1651241344.563744,
61
+ "learning_rate": {
62
+ ":type:": "<class 'function'>",
63
+ ":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9DJ9mbDVFChZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
64
+ },
65
+ "tensorboard_log": null,
66
+ "lr_schedule": {
67
+ ":type:": "<class 'function'>",
68
+ ":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9DJ9mbDVFChZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
69
+ },
70
+ "_last_obs": null,
71
+ "_last_episode_starts": {
72
+ ":type:": "<class 'numpy.ndarray'>",
73
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
74
+ },
75
+ "_last_original_obs": {
76
+ ":type:": "<class 'numpy.ndarray'>",
77
+ ":serialized:": "gAWVBQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaQAAAAAAAAAC//w/Z8cDJAjpSZNAGt0j/NriSd3DYfQMix1T2nHwXAmmgVckMSBcCeTzo22dvoP9jMTf3l75I/RTNBWNRrkT+Q3qB5X/7pv5QIEFJCQ9Q/2G7onwr79r+gQfBkKwHzP4paArdcVpE/KB3f0JSppD+mK0y+1R8TQKDc2Hrq81q/meq9PzA0sz/Ufa1XASS5v5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsShpSMAUOUdJRSlC4="
78
+ },
79
+ "_episode_num": 1000,
80
+ "use_sde": false,
81
+ "sde_sample_freq": -1,
82
+ "_current_progress_remaining": 0.0,
83
+ "ep_info_buffer": {
84
+ ":type:": "<class 'collections.deque'>",
85
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRrQdUxeDjECUhpRSlIwBbJRN6AOMAXSUR0DR8SdISUTtdX2UKGgGaAloD0MIVmEzwKXIokCUhpRSlGgVTegDaBZHQNH26mhIvrZ1fZQoaAZoCWgPQwhg56bNmPCdQJSGlFKUaBVN6ANoFkdA0fzB2YfGMnV9lChoBmgJaA9DCEz6eynMJZRAlIaUUpRoFU3oA2gWR0DSAlSU/wAmdX2UKGgGaAloD0MIU5W2uB5eo0CUhpRSlGgVTegDaBZHQNIHpjvJA+p1fZQoaAZoCWgPQwhi26LM5uWaQJSGlFKUaBVN6ANoFkdA0g0swLVnVXV9lChoBmgJaA9DCNXL7zRBPqNAlIaUUpRoFU3oA2gWR0DSErd9hJAddX2UKGgGaAloD0MI2gOtwHBtiUCUhpRSlGgVTegDaBZHQNIYjt0q6OJ1fZQoaAZoCWgPQwiSW5Nu29GoQJSGlFKUaBVN6ANoFkdA0h4WV9Wp63V9lChoBmgJaA9DCFAdq5Q+yphAlIaUUpRoFU3oA2gWR0DSI3NdcB2fdX2UKGgGaAloD0MIOMDMdyBynECUhpRSlGgVTegDaBZHQNIolQEU0vZ1fZQoaAZoCWgPQwg1mfG2cvOAQJSGlFKUaBVN6ANoFkdA0i5FdsBQvnV9lChoBmgJaA9DCL9FJ0stEZNAlIaUUpRoFU3oA2gWR0DSM7q7cwg1dX2UKGgGaAloD0MIrDjVWrjRmkCUhpRSlGgVTegDaBZHQNI5QsMI/qx1fZQoaAZoCWgPQwgeNLvu3RGgQJSGlFKUaBVN6ANoFkdA0j9CUhV2inV9lChoBmgJaA9DCMXJ/Q6tUKNAlIaUUpRoFU3oA2gWR0DSRNz3N9pidX2UKGgGaAloD0MItABtqxnSj0CUhpRSlGgVTegDaBZHQNJKZKqS5iF1fZQoaAZoCWgPQwiPq5Fd+XOeQJSGlFKUaBVN6ANoFkdA0k/cjtXxOXV9lChoBmgJaA9DCJCiztwDuX1AlIaUUpRoFU3oA2gWR0DSVUC1twaSdX2UKGgGaAloD0MIsffii07Tp0CUhpRSlGgVTegDaBZHQNJapFWCEpR1fZQoaAZoCWgPQwgs8uuHqBeqQJSGlFKUaBVN6ANoFkdA0l/mswco6XV9lChoBmgJaA9DCDlCBvL0wKRAlIaUUpRoFU3oA2gWR0DSZYKx8lXzdX2UKGgGaAloD0MIfhr35peCnUCUhpRSlGgVTegDaBZHQNJqvWUOd5J1fZQoaAZoCWgPQwipFDsal5yjQJSGlFKUaBVN6ANoFkdA0nBooaDPGHV9lChoBmgJaA9DCLh0zHnWRpdAlIaUUpRoFU3oA2gWR0DSdg8C8vmHdX2UKGgGaAloD0MI/wbt1TeYmkCUhpRSlGgVTegDaBZHQNJ8N+q//Nt1fZQoaAZoCWgPQwioOA68OuuYQJSGlFKUaBVN6ANoFkdA0oHXMibDuXV9lChoBmgJaA9DCDV/TGtzH4pAlIaUUpRoFU3oA2gWR0DSh5g/iYLLdX2UKGgGaAloD0MIweJw5lfnmkCUhpRSlGgVTegDaBZHQNKM20n9ehR1fZQoaAZoCWgPQwinP/uRwp+gQJSGlFKUaBVN6ANoFkdA0pJf8ejmCHV9lChoBmgJaA9DCITwaOO4QpVAlIaUUpRoFU3oA2gWR0DSl4cM7U5NdX2UKGgGaAloD0MI7YLBNffblkCUhpRSlGgVTegDaBZHQNKcVdW2gFp1fZQoaAZoCWgPQwg7qwX2GO6XQJSGlFKUaBVN6ANoFkdA0qFdAn2IwnV9lChoBmgJaA9DCCu+ofBJX6VAlIaUUpRoFU3oA2gWR0DSptFQ9A5adX2UKGgGaAloD0MIuyU5YCdFmkCUhpRSlGgVTegDaBZHQNKsO3MUypJ1fZQoaAZoCWgPQwjONczQEH2kQJSGlFKUaBVN6ANoFkdA0rHCHVwxWXV9lChoBmgJaA9DCPNZngc3OaRAlIaUUpRoFU3oA2gWR0DSttnM0P6LdX2UKGgGaAloD0MIINWw37MnnkCUhpRSlGgVTegDaBZHQNK75amCROl1fZQoaAZoCWgPQwhbJsPx7DujQJSGlFKUaBVN6ANoFkdA0sErGEf1YnV9lChoBmgJaA9DCFoRNdEH1Y1AlIaUUpRoFU3oA2gWR0DSxk/DgqEwdX2UKGgGaAloD0MIK98zEgFglECUhpRSlGgVTegDaBZHQNLLdW0VrRB1fZQoaAZoCWgPQwhRn+QOuyuIQJSGlFKUaBVN6ANoFkdA0tC4tUn5SHV9lChoBmgJaA9DCInRcwtNr5NAlIaUUpRoFU3oA2gWR0DS1kt14gRsdX2UKGgGaAloD0MItYe9UOCmmkCUhpRSlGgVTegDaBZHQNLbgVSS/0x1fZQoaAZoCWgPQwgIVWr24LyRQJSGlFKUaBVN6ANoFkdA0uA8dT5wfnV9lChoBmgJaA9DCMHG9e+6qo1AlIaUUpRoFU3oA2gWR0DS5VY2fkFOdX2UKGgGaAloD0MIDAIrh86+okCUhpRSlGgVTegDaBZHQNLqpVt8/lh1fZQoaAZoCWgPQwjv/nivGjSXQJSGlFKUaBVN6ANoFkdA0u/zaVlf7nV9lChoBmgJaA9DCPj578GLbZhAlIaUUpRoFU3oA2gWR0DS9QfSmZVodX2UKGgGaAloD0MIeT4D6i0ZgUCUhpRSlGgVTegDaBZHQNL6k+MQ2/B1fZQoaAZoCWgPQwgEVDiClFWQQJSGlFKUaBVN6ANoFkdA0wB6Yv38GnV9lChoBmgJaA9DCMsQx7rY5o1AlIaUUpRoFU3oA2gWR0DTBf44FRpDdX2UKGgGaAloD0MIi/okdxCfqECUhpRSlGgVTegDaBZHQNMLPPddmg91fZQoaAZoCWgPQwhhG/FkN1FBQJSGlFKUaBVN6ANoFkdA0xEFckt293V9lChoBmgJaA9DCGJNZVEYyplAlIaUUpRoFU3oA2gWR0DTFgQS5AhTdX2UKGgGaAloD0MIKLaCpp1WpUCUhpRSlGgVTegDaBZHQNMa9IhUzbh1fZQoaAZoCWgPQwhi9rLtROmXQJSGlFKUaBVN6ANoFkdA0yAU/DLr5nV9lChoBmgJaA9DCPktOlnqXalAlIaUUpRoFU3oA2gWR0DTJSBY/3WXdX2UKGgGaAloD0MI4CpPIGw0nECUhpRSlGgVTegDaBZHQNMqLH3ta6l1fZQoaAZoCWgPQwjdlzPbld18QJSGlFKUaBVN6ANoFkdA0y8s1Vo6CHV9lChoBmgJaA9DCBK9jGJJf6NAlIaUUpRoFU3oA2gWR0DTNItQ9A5adX2UKGgGaAloD0MIRrHc0lrDnUCUhpRSlGgVTegDaBZHQNM51iVObiJ1fZQoaAZoCWgPQwjRrkLKL0GkQJSGlFKUaBVN6ANoFkdA0z8CD7ZWaXV9lChoBmgJaA9DCNnr3R8vQYZAlIaUUpRoFU3oA2gWR0DTRDRHQQcxdX2UKGgGaAloD0MIxRwEHf1VnkCUhpRSlGgVTegDaBZHQNNKEXQ2MsJ1fZQoaAZoCWgPQwjS4SGMz5SeQJSGlFKUaBVN6ANoFkdA00+8qbBoEnV9lChoBmgJaA9DCHnpJjGoRYtAlIaUUpRoFU3oA2gWR0DTVSD127nQdX2UKGgGaAloD0MIMxmO53POj0CUhpRSlGgVTegDaBZHQNNateEug6F1fZQoaAZoCWgPQwh8Kqc9BUmSQJSGlFKUaBVN6ANoFkdA02AfmNBF/nV9lChoBmgJaA9DCJTA5hzcH41AlIaUUpRoFU3oA2gWR0DTZfwood+5dX2UKGgGaAloD0MInMHfL3YrmkCUhpRSlGgVTegDaBZHQNNr0yJj2Bd1fZQoaAZoCWgPQwjOM/YlC4CfQJSGlFKUaBVN6ANoFkdA03FjSLqD9XV9lChoBmgJaA9DCEevBig92JRAlIaUUpRoFU3oA2gWR0DTdnUka/ATdX2UKGgGaAloD0MI6NhBJU4boECUhpRSlGgVTegDaBZHQNN7fRCD28J1fZQoaAZoCWgPQwjcnbXbPnieQJSGlFKUaBVN6ANoFkdA04CuLgXMyXV9lChoBmgJaA9DCKd38X48gpJAlIaUUpRoFU3oA2gWR0DThocfSx7idX2UKGgGaAloD0MIL/oK0jwcoECUhpRSlGgVTegDaBZHQNOMAxUrCnB1fZQoaAZoCWgPQwjfo/56ZeeSQJSGlFKUaBVN6ANoFkdA05Ec39JjD3V9lChoBmgJaA9DCMDtCRKLjJhAlIaUUpRoFU3oA2gWR0DTlh5HAh0RdX2UKGgGaAloD0MI08CPahBHo0CUhpRSlGgVTegDaBZHQNOblQqqfe11fZQoaAZoCWgPQwgebRyxBiacQJSGlFKUaBVN6ANoFkdA06DSE1EVnHV9lChoBmgJaA9DCIKOVrX0TaBAlIaUUpRoFU3oA2gWR0DTpk4jxCpndX2UKGgGaAloD0MI5pSAmFyDokCUhpRSlGgVTegDaBZHQNOrc6hHskZ1fZQoaAZoCWgPQwgYPiKmVOqfQJSGlFKUaBVN6ANoFkdA07DSKMNtqHV9lChoBmgJaA9DCDmc+dVU7qFAlIaUUpRoFU3oA2gWR0DTtcf1mJ3xdX2UKGgGaAloD0MIC5krg6onlkCUhpRSlGgVTegDaBZHQNO6+NsrNGF1fZQoaAZoCWgPQwh1OpD1bFqkQJSGlFKUaBVN6ANoFkdA08BhyPMjeXV9lChoBmgJaA9DCNbiUwBM1I9AlIaUUpRoFU3oA2gWR0DTxZmzZ6D5dX2UKGgGaAloD0MILbRzmrX/nECUhpRSlGgVTegDaBZHQNPKvdmtheB1fZQoaAZoCWgPQwhNTBditdJ2wJSGlFKUaBVN6ANoFkdA08/pXvphW3V9lChoBmgJaA9DCCaN0TqqSJdAlIaUUpRoFU3oA2gWR0DT1TN+y7f6dX2UKGgGaAloD0MIFcjsLGoAnECUhpRSlGgVTegDaBZHQNPaXotDlYF1fZQoaAZoCWgPQwgGMGXgMAKQQJSGlFKUaBVN6ANoFkdA0+AIcAzYVnV9lChoBmgJaA9DCPvNxHTRn5VAlIaUUpRoFU3oA2gWR0DT5RWQ8wHrdX2UKGgGaAloD0MIXjC45va/pUCUhpRSlGgVTegDaBZHQNPpySVGCqZ1fZQoaAZoCWgPQwj7k/jciRaiQJSGlFKUaBVN6ANoFkdA0+9vB91EE3V9lChoBmgJaA9DCBVT6Ses+KRAlIaUUpRoFU3oA2gWR0DT9SN7+kxidX2UKGgGaAloD0MI1cqEX/KXoECUhpRSlGgVTegDaBZHQNP6hZ7w8W91fZQoaAZoCWgPQwghAg6hmlqfQJSGlFKUaBVN6ANoFkdA1AAANMXaanV9lChoBmgJaA9DCLDo1mvKg6ZAlIaUUpRoFU3oA2gWR0DUBZVfx+a0dWUu"
86
+ },
87
+ "ep_success_buffer": {
88
+ ":type:": "<class 'collections.deque'>",
89
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
90
+ },
91
+ "_n_updates": 999000,
92
+ "buffer_size": 1,
93
+ "batch_size": 128,
94
+ "learning_starts": 1000,
95
+ "tau": 0.02,
96
+ "gamma": 0.99,
97
+ "gradient_steps": 1,
98
+ "optimize_memory_usage": false,
99
+ "replay_buffer_class": {
100
+ ":type:": "<class 'abc.ABCMeta'>",
101
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
102
+ "__module__": "stable_baselines3.common.buffers",
103
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
104
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fd18c4d8040>",
105
+ "add": "<function ReplayBuffer.add at 0x7fd18c4d80d0>",
106
+ "sample": "<function ReplayBuffer.sample at 0x7fd18c4d8160>",
107
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fd18c4d81f0>",
108
+ "__abstractmethods__": "frozenset()",
109
+ "_abc_impl": "<_abc_data object at 0x7fd18c559810>"
110
+ },
111
+ "replay_buffer_kwargs": {},
112
+ "train_freq": {
113
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
114
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
115
+ },
116
+ "use_sde_at_warmup": false,
117
+ "target_entropy": -6.0,
118
+ "ent_coef": "auto",
119
+ "target_update_interval": 1
120
+ }
sac-seals-Walker2d-v0/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9798c854a970b17a108a13eda5595f22fc4b5c308bb1b1cf31ebed16257d63a
3
+ size 1191
sac-seals-Walker2d-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66d424fa0967af24131dc4fcc1a5aae4fb20392456a641809664696a86d08ffa
3
+ size 2625861
sac-seals-Walker2d-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce9d404bdbb8d6b60747e399531c931d5ff79427b72feb86f672b381ca539e58
3
+ size 747
sac-seals-Walker2d-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-121-generic-x86_64-with-glibc2.29 #137-Ubuntu SMP Wed Jun 15 13:33:07 UTC 2022
2
+ Python: 3.8.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0+cu102
5
+ GPU Enabled: False
6
+ Numpy: 1.22.3
7
+ Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b617fef221802955270c6483ba0e5709bb7195941425e87f630ce139614b592
3
+ size 34481