ernestum commited on
Commit
561e688
1 Parent(s): dc0c441

Initial Commit

Browse files
ppo-seals/Walker2d-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:134b08e1ff9a8492abef485e4a8d9be53da3bfbcb3d81f797f5280ee98d2bb90
3
  size 1750082
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34dbeb60f28081021872492e1a8eeb843f0376d4fde2ee7bf88d612a916b41b8
3
  size 1750082
ppo-seals/Walker2d-v0/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd03d774f70>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd03d777040>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd03d7770d0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd03d777160>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fd03d7771f0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fd03d777280>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd03d777310>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fd03d7773a0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd03d777430>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd03d7774c0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd03d777550>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fd03d76f6c0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2441969f70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f244196d040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f244196d0d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f244196d160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f244196d1f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f244196d280>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f244196d310>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f244196d3a0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f244196d430>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f244196d4c0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f244196d550>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f24419646c0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 1429.1260997000002, "std_reward": 411.7513179252928, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-27T12:11:24.490550"}
 
1
+ {"mean_reward": 1429.1260997000002, "std_reward": 411.7513179252928, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-30T12:08:39.184939"}