erniechiew
commited on
Commit
•
d290023
1
Parent(s):
947f108
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 951.48 +/- 417.57
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0fdea4ae1fe14d1e3201483f157a1522f756ce67221dd153c5b460e6a294f8b
|
3 |
+
size 129333
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0a11
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9ac3cc1dc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9ac3cc1e50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9ac3cc1ee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9ac3cc1f70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9ac3cc8040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9ac3cc80d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9ac3cc8160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9ac3cc81f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9ac3cc8280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9ac3cc8310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9ac3cc83a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9ac3cc8430>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f9ac3cbbbd0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 3000000,
|
63 |
+
"_total_timesteps": 3000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675785057100380114,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAA+/1D+dSuy/xJ8eP6UQ0D5MwqG/p4gDv4GSYT8yOp09CReWPpzgXEBjPoY+jcAYQHMetz9Q/3u+Tt4nwP/Nrj71zLU/1D00QKMmIj9UxaQ8nyl4v8r/Az3vXss/fCXvPqnGWr/nJx0/b6dCwD3IPD8JzRo/8IRLwPYjnb9mNlC+b4snwNaAEMA6o+29LdTjPr1vQj8Miyu+gl9lP4znrT3P/6W/BN9zP9/FIb8nSYFA/cy4PzVWhr0uPYS/pDPpvxDXab8sC1m+eB5/v61xPMCpxlq/ooHQv2+nQsBhk62/QwjAP6fbEMCXpLE+jvoMPyvGgT+mVDU/o73kP0Z1/r70OZy/+5y2v3ZJjb86tog9GGi+P1C0oL0tH7e/yxnuvbhRej/LgDk/ensYP/cd0L6cwj+9D2uTvy1yQj/gK6K8qcZav+cnHT/1Vqg+Pcg8P0A8zz5glcS+sSc7P72Wnz+U/d0+ZkBHPxA4ibwsXs2/up5KPzq6Qb+qK/A/leePP12iqr9Mr709Ku45vyzbr74eT/A+WUCZv6XcCj/tj9k/MooZQDcDAL9fFaK/JxzJP6nGWr/nJx0/9VaoPmGTrb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAArzJU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA86H3PQAAAAAdlvC/AAAAAIfdhT0AAAAAgMHcPwAAAAAGQgM+AAAAAB8b8j8AAAAAmcL9vQAAAABwQP2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1g/ItAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPDBp7wAAAAA8kjyvwAAAAAfZjG9AAAAAHsg5T8AAAAAHpgJvQAAAAC/k+0/AAAAABuXLL0AAAAAn/sAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMRgRrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICMWAY+AAAAABCO6b8AAAAAxqNhPQAAAACxQOA/AAAAAI4PvLsAAAAAo+3jPwAAAABM2VM9AAAAAFuW9L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrCoW1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhUsAPgAAAAAfodm/AAAAAEDH/D0AAAAAeMT5PwAAAADKpoq9AAAAAPL83z8AAAAAU0KFvAAAAAB19fS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJRLiKl54W2MAWyUTegDjAF0lEdArdhscENe+nV9lChoBkdAl3IMsUZeiWgHTegDaAhHQK3ZREDyOJd1fZQoaAZHQJDZ0ubqhURoB03oA2gIR0Ct3v8TakAQdX2UKGgGR0CTl45eJHiFaAdN6ANoCEdArd8jIikftHV9lChoBkdAi+t4cNpdr2gHTegDaAhHQK3fax46fap1fZQoaAZHQJUyEtWdVedoB03oA2gIR0Ct4EiHARChdX2UKGgGR0CW69RK6FufaAdN6ANoCEdAreYMhaC+UXV9lChoBkdAmD+aRhc7hmgHTegDaAhHQK3mMvt+kQB1fZQoaAZHQJHB7wF1SwZoB03oA2gIR0Ct5nww0wajdX2UKGgGR8BAxqt5le4TaAdLW2gIR0Ct5yT5O8CgdX2UKGgGR0CRLp2MKkVOaAdN6ANoCEdAredf7cfvF3V9lChoBkdAlFkcT37DVGgHTegDaAhHQK3tGZ2IO6N1fZQoaAZHQJOGrnnuAqdoB03oA2gIR0Ct7T5UcXFcdX2UKGgGR0CUBFk/KQq7aAdN6ANoCEdAre4s1n/T9nV9lChoBkdAlWqOjdpItmgHTegDaAhHQK3uZ8rI5o51fZQoaAZHwEcSnBtUGV1oB0tRaAhHQK3uvko4MnZ1fZQoaAZHwEWj2yLQ5WBoB0tXaAhHQK3vXLh73PB1fZQoaAZHwEEDrVOKwZBoB0thaAhHQK3wCzeGfwt1fZQoaAZHwEbzkQPI4l1oB0t7aAhHQK3w6eGO+7F1fZQoaAZHwEFQJ53Tuv5oB0tOaAhHQK3xeKIi1Rd1fZQoaAZHQJZYy8Empl1oB03oA2gIR0Ct9C6Ogg5jdX2UKGgGR0CT0LnRLK3eaAdN6ANoCEdArfRTBTGYKXV9lChoBkfAPl8hLXcxkGgHS3doCEdArfUHM6ij+XV9lChoBkdAlfMfMwDeTGgHTegDaAhHQK31hcNYr8R1fZQoaAZHwEBtbXYlIEtoB0tgaAhHQK32NlijL0V1fZQoaAZHQIgJKp97WupoB03oA2gIR0Ct+JchkiD/dX2UKGgGR0CXAde2uxKQaAdN6ANoCEdArftxhYvFnHV9lChoBkdAkjj9sBQvYmgHTegDaAhHQK38IhufmLd1fZQoaAZHQJLqyTNdJJ5oB03oA2gIR0Ct/UjXFtKqdX2UKGgGR0CUHCA3DNyHaAdN6ANoCEdArf+maH9FWnV9lChoBkdAkYCUHdGiH2gHTegDaAhHQK4CgVgx8D11fZQoaAZHQJYxx8OTaCdoB03oA2gIR0CuAzKslsxgdX2UKGgGR0CL5Mys0YTCaAdN6ANoCEdArgRXhbW3B3V9lChoBkdAkyQssg+yJWgHTegDaAhHQK4GuKTjebd1fZQoaAZHQJJj4e+23KBoB03oA2gIR0CuCaZw4sErdX2UKGgGR0CVdqJSzgMuaAdN6ANoCEdArgpcjX4CZHV9lChoBkdAk8MTTz/ZNGgHTegDaAhHQK4Lidf9gnd1fZQoaAZHQJHokXfqHGloB03oA2gIR0CuDfX0f5k9dX2UKGgGR0COclouf29MaAdN6ANoCEdArhDLcM3IdXV9lChoBkdAkjJedXko4WgHTegDaAhHQK4RfI5HVgB1fZQoaAZHQJdQBA7gbZRoB03oA2gIR0CuEqLxRVIadX2UKGgGR0B3QCgyuZCwaAdN6ANoCEdArhUSh11W83V9lChoBkdAkLr6Wom5UmgHTegDaAhHQK4X/O9FnZl1fZQoaAZHQJPIS1b7j1hoB03oA2gIR0CuGK6JAMUidX2UKGgGR0CHKmxO+IuXaAdN6ANoCEdArhna+g13uHV9lChoBkdAkF2fjKgZj2gHTegDaAhHQK4cT1A7gbZ1fZQoaAZHQJSLH1wo9cNoB03oA2gIR0CuHy4Yzi0fdX2UKGgGR0CVMXQp4KQaaAdN6ANoCEdArh/jH4oJA3V9lChoBkdAk7AgjQiRn2gHTegDaAhHQK4hDitq59V1fZQoaAZHQH/Qgkona39oB038AWgIR0CuItPH93r2dX2UKGgGR0CUnNu4wyqNaAdN6ANoCEdAriN2+K0laHV9lChoBkdAf7KJnQID5mgHTcQCaAhHQK4k7x2jfvZ1fZQoaAZHQJMyPkIX0oVoB03oA2gIR0CuKEO0b961dX2UKGgGR0CJkpV0cOslaAdN6ANoCEdArioOs1baAXV9lChoBkdAj/2T41xbS2gHTegDaAhHQK4qtyrgflp1fZQoaAZHQI2oyjBVMmFoB03oA2gIR0CuLDO/k/8mdX2UKGgGR0CIQuTewcHXaAdN6ANoCEdAri9tY0VJtnV9lChoBkdAkYs2/Firk2gHTegDaAhHQK4xLjUd7v51fZQoaAZHQJIe1c2R7qpoB03oA2gIR0CuMdB91EE1dX2UKGgGR0BUDd2gWac7aAdLlmgIR0CuMj2Mju8cdX2UKGgGR0CK8VJZntfHaAdNgANoCEdArjKP6l+Ey3V9lChoBkdAkBoz3Zf2K2gHTegDaAhHQK42hh1DBuZ1fZQoaAZHQI7QC4UeuFJoB03oA2gIR0CuOOmTC+DfdX2UKGgGR0BgHAlhPTG6aAdN6ANoCEdArjlWfRNRFnV9lChoBkdAglbLu6VdHGgHTegDaAhHQK45qFmFrVR1fZQoaAZHQJXztu0kWyloB03oA2gIR0CuPZkfDDTCdX2UKGgGR0CJUShnrY5DaAdN6ANoCEdArj/2uvECNnV9lChoBkdAkquPRqoIfWgHTegDaAhHQK5AYbMHKOl1fZQoaAZHQH5ax5Pdl/ZoB03oA2gIR0CuQLRVQyh0dX2UKGgGR0BoXVvMr3CbaAdN6ANoCEdArkS1Iqbz9XV9lChoBkdAk8X0hePaMGgHTegDaAhHQK5HGQQtjCp1fZQoaAZHQIDGVR1oxpNoB03oA2gIR0CuR4bjDKoydX2UKGgGR0CCfwicoYvWaAdN6ANoCEdArkfXPZ7HAHV9lChoBkdAd6o4A0bcXWgHTdABaAhHQK5IAowVTJh1fZQoaAZHQHJyxKUVzp5oB02yAWgIR0CuSkiqyWzGdX2UKGgGR0BeHkqhDgIhaAdNuAFoCEdArkrGPo3aSXV9lChoBkdANUVUVBUrCmgHTdwBaAhHQK5OLGn4wh51fZQoaAZHQImVNQO4G2VoB03oA2gIR0CuTxUV8CxNdX2UKGgGR0Bw9lqi48U3aAdN6ANoCEdArk8/VVghKXV9lChoBkdAgqhEH2RJVmgHTegDaAhHQK5RaXUH6dl1fZQoaAZHQJCqhh6Skj5oB03oA2gIR0CuVTd0ihWYdX2UKGgGR0CLnHCk43m3aAdN6ANoCEdArlYdUhmoSHV9lChoBkdAkEnFvl2eQWgHTegDaAhHQK5WRudf9gp1fZQoaAZHQI523ZTQ3P1oB03oA2gIR0CuWHg6Mir1dX2UKGgGR0BjUPGIbfgraAdN6ANoCEdArlxrQmeDnXV9lChoBkdAhaQG1QZXMmgHTegDaAhHQK5dVFiKBNF1fZQoaAZHQI64fppvgm9oB03oA2gIR0CuXX4ekpI+dX2UKGgGR0CQU7m/WUbDaAdN6ANoCEdArl+pG6PKdXV9lChoBkdAjFG0/wAlwGgHTegDaAhHQK5jgAo5PuZ1fZQoaAZHQJGCTkGRmshoB03oA2gIR0CuZGUYsNDudX2UKGgGR0CRLZNmlImPaAdN6ANoCEdArmSOc4HX3HV9lChoBkdAlDCzmOlwcmgHTegDaAhHQK5mts5XEIh1fZQoaAZHQJDEWamXPZ9oB03oA2gIR0CuapE7OmiydX2UKGgGR0CTBry8SPELaAdN6ANoCEdArmt4igTRIHV9lChoBkdAjeArSeAd4mgHTegDaAhHQK5rogWac7R1fZQoaAZHQJG0B9Wp6yBoB03oA2gIR0CubdDc2zfKdX2UKGgGR0CQePV7Qb++aAdN6ANoCEdArnGobCJoCnV9lChoBkdAlxLBIWgvlGgHTegDaAhHQK5ykUL2HtZ1fZQoaAZHQJL3lw0fozNoB03oA2gIR0Cucrpz90ihdX2UKGgGR0CS1FI/JNj9aAdN6ANoCEdArnTqE12q1nVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 93750,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d8b4a5acc22e5596d31facbd176e84a770b9ebc0e61f8698bf95e3e5efdc689
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05a38cb3a4531ad0cb1d5e5e01fa3b88175ae72f2389edb9036087baf35782d2
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-58-generic-x86_64-with-glibc2.17 # 64~20.04.1-Ubuntu SMP Fri Jan 6 16:42:31 UTC 2023
|
2 |
+
- Python: 3.8.15
|
3 |
+
- Stable-Baselines3: 1.7.0a11
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9ac3cc1dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9ac3cc1e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9ac3cc1ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9ac3cc1f70>", "_build": "<function ActorCriticPolicy._build at 0x7f9ac3cc8040>", "forward": "<function ActorCriticPolicy.forward at 0x7f9ac3cc80d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9ac3cc8160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9ac3cc81f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9ac3cc8280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9ac3cc8310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9ac3cc83a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9ac3cc8430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9ac3cbbbd0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675785057100380114, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAA+/1D+dSuy/xJ8eP6UQ0D5MwqG/p4gDv4GSYT8yOp09CReWPpzgXEBjPoY+jcAYQHMetz9Q/3u+Tt4nwP/Nrj71zLU/1D00QKMmIj9UxaQ8nyl4v8r/Az3vXss/fCXvPqnGWr/nJx0/b6dCwD3IPD8JzRo/8IRLwPYjnb9mNlC+b4snwNaAEMA6o+29LdTjPr1vQj8Miyu+gl9lP4znrT3P/6W/BN9zP9/FIb8nSYFA/cy4PzVWhr0uPYS/pDPpvxDXab8sC1m+eB5/v61xPMCpxlq/ooHQv2+nQsBhk62/QwjAP6fbEMCXpLE+jvoMPyvGgT+mVDU/o73kP0Z1/r70OZy/+5y2v3ZJjb86tog9GGi+P1C0oL0tH7e/yxnuvbhRej/LgDk/ensYP/cd0L6cwj+9D2uTvy1yQj/gK6K8qcZav+cnHT/1Vqg+Pcg8P0A8zz5glcS+sSc7P72Wnz+U/d0+ZkBHPxA4ibwsXs2/up5KPzq6Qb+qK/A/leePP12iqr9Mr709Ku45vyzbr74eT/A+WUCZv6XcCj/tj9k/MooZQDcDAL9fFaK/JxzJP6nGWr/nJx0/9VaoPmGTrb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAArzJU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA86H3PQAAAAAdlvC/AAAAAIfdhT0AAAAAgMHcPwAAAAAGQgM+AAAAAB8b8j8AAAAAmcL9vQAAAABwQP2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1g/ItAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPDBp7wAAAAA8kjyvwAAAAAfZjG9AAAAAHsg5T8AAAAAHpgJvQAAAAC/k+0/AAAAABuXLL0AAAAAn/sAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMRgRrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICMWAY+AAAAABCO6b8AAAAAxqNhPQAAAACxQOA/AAAAAI4PvLsAAAAAo+3jPwAAAABM2VM9AAAAAFuW9L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrCoW1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhUsAPgAAAAAfodm/AAAAAEDH/D0AAAAAeMT5PwAAAADKpoq9AAAAAPL83z8AAAAAU0KFvAAAAAB19fS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJRLiKl54W2MAWyUTegDjAF0lEdArdhscENe+nV9lChoBkdAl3IMsUZeiWgHTegDaAhHQK3ZREDyOJd1fZQoaAZHQJDZ0ubqhURoB03oA2gIR0Ct3v8TakAQdX2UKGgGR0CTl45eJHiFaAdN6ANoCEdArd8jIikftHV9lChoBkdAi+t4cNpdr2gHTegDaAhHQK3fax46fap1fZQoaAZHQJUyEtWdVedoB03oA2gIR0Ct4EiHARChdX2UKGgGR0CW69RK6FufaAdN6ANoCEdAreYMhaC+UXV9lChoBkdAmD+aRhc7hmgHTegDaAhHQK3mMvt+kQB1fZQoaAZHQJHB7wF1SwZoB03oA2gIR0Ct5nww0wajdX2UKGgGR8BAxqt5le4TaAdLW2gIR0Ct5yT5O8CgdX2UKGgGR0CRLp2MKkVOaAdN6ANoCEdAredf7cfvF3V9lChoBkdAlFkcT37DVGgHTegDaAhHQK3tGZ2IO6N1fZQoaAZHQJOGrnnuAqdoB03oA2gIR0Ct7T5UcXFcdX2UKGgGR0CUBFk/KQq7aAdN6ANoCEdAre4s1n/T9nV9lChoBkdAlWqOjdpItmgHTegDaAhHQK3uZ8rI5o51fZQoaAZHwEcSnBtUGV1oB0tRaAhHQK3uvko4MnZ1fZQoaAZHwEWj2yLQ5WBoB0tXaAhHQK3vXLh73PB1fZQoaAZHwEEDrVOKwZBoB0thaAhHQK3wCzeGfwt1fZQoaAZHwEbzkQPI4l1oB0t7aAhHQK3w6eGO+7F1fZQoaAZHwEFQJ53Tuv5oB0tOaAhHQK3xeKIi1Rd1fZQoaAZHQJZYy8Empl1oB03oA2gIR0Ct9C6Ogg5jdX2UKGgGR0CT0LnRLK3eaAdN6ANoCEdArfRTBTGYKXV9lChoBkfAPl8hLXcxkGgHS3doCEdArfUHM6ij+XV9lChoBkdAlfMfMwDeTGgHTegDaAhHQK31hcNYr8R1fZQoaAZHwEBtbXYlIEtoB0tgaAhHQK32NlijL0V1fZQoaAZHQIgJKp97WupoB03oA2gIR0Ct+JchkiD/dX2UKGgGR0CXAde2uxKQaAdN6ANoCEdArftxhYvFnHV9lChoBkdAkjj9sBQvYmgHTegDaAhHQK38IhufmLd1fZQoaAZHQJLqyTNdJJ5oB03oA2gIR0Ct/UjXFtKqdX2UKGgGR0CUHCA3DNyHaAdN6ANoCEdArf+maH9FWnV9lChoBkdAkYCUHdGiH2gHTegDaAhHQK4CgVgx8D11fZQoaAZHQJYxx8OTaCdoB03oA2gIR0CuAzKslsxgdX2UKGgGR0CL5Mys0YTCaAdN6ANoCEdArgRXhbW3B3V9lChoBkdAkyQssg+yJWgHTegDaAhHQK4GuKTjebd1fZQoaAZHQJJj4e+23KBoB03oA2gIR0CuCaZw4sErdX2UKGgGR0CVdqJSzgMuaAdN6ANoCEdArgpcjX4CZHV9lChoBkdAk8MTTz/ZNGgHTegDaAhHQK4Lidf9gnd1fZQoaAZHQJHokXfqHGloB03oA2gIR0CuDfX0f5k9dX2UKGgGR0COclouf29MaAdN6ANoCEdArhDLcM3IdXV9lChoBkdAkjJedXko4WgHTegDaAhHQK4RfI5HVgB1fZQoaAZHQJdQBA7gbZRoB03oA2gIR0CuEqLxRVIadX2UKGgGR0B3QCgyuZCwaAdN6ANoCEdArhUSh11W83V9lChoBkdAkLr6Wom5UmgHTegDaAhHQK4X/O9FnZl1fZQoaAZHQJPIS1b7j1hoB03oA2gIR0CuGK6JAMUidX2UKGgGR0CHKmxO+IuXaAdN6ANoCEdArhna+g13uHV9lChoBkdAkF2fjKgZj2gHTegDaAhHQK4cT1A7gbZ1fZQoaAZHQJSLH1wo9cNoB03oA2gIR0CuHy4Yzi0fdX2UKGgGR0CVMXQp4KQaaAdN6ANoCEdArh/jH4oJA3V9lChoBkdAk7AgjQiRn2gHTegDaAhHQK4hDitq59V1fZQoaAZHQH/Qgkona39oB038AWgIR0CuItPH93r2dX2UKGgGR0CUnNu4wyqNaAdN6ANoCEdAriN2+K0laHV9lChoBkdAf7KJnQID5mgHTcQCaAhHQK4k7x2jfvZ1fZQoaAZHQJMyPkIX0oVoB03oA2gIR0CuKEO0b961dX2UKGgGR0CJkpV0cOslaAdN6ANoCEdArioOs1baAXV9lChoBkdAj/2T41xbS2gHTegDaAhHQK4qtyrgflp1fZQoaAZHQI2oyjBVMmFoB03oA2gIR0CuLDO/k/8mdX2UKGgGR0CIQuTewcHXaAdN6ANoCEdAri9tY0VJtnV9lChoBkdAkYs2/Firk2gHTegDaAhHQK4xLjUd7v51fZQoaAZHQJIe1c2R7qpoB03oA2gIR0CuMdB91EE1dX2UKGgGR0BUDd2gWac7aAdLlmgIR0CuMj2Mju8cdX2UKGgGR0CK8VJZntfHaAdNgANoCEdArjKP6l+Ey3V9lChoBkdAkBoz3Zf2K2gHTegDaAhHQK42hh1DBuZ1fZQoaAZHQI7QC4UeuFJoB03oA2gIR0CuOOmTC+DfdX2UKGgGR0BgHAlhPTG6aAdN6ANoCEdArjlWfRNRFnV9lChoBkdAglbLu6VdHGgHTegDaAhHQK45qFmFrVR1fZQoaAZHQJXztu0kWyloB03oA2gIR0CuPZkfDDTCdX2UKGgGR0CJUShnrY5DaAdN6ANoCEdArj/2uvECNnV9lChoBkdAkquPRqoIfWgHTegDaAhHQK5AYbMHKOl1fZQoaAZHQH5ax5Pdl/ZoB03oA2gIR0CuQLRVQyh0dX2UKGgGR0BoXVvMr3CbaAdN6ANoCEdArkS1Iqbz9XV9lChoBkdAk8X0hePaMGgHTegDaAhHQK5HGQQtjCp1fZQoaAZHQIDGVR1oxpNoB03oA2gIR0CuR4bjDKoydX2UKGgGR0CCfwicoYvWaAdN6ANoCEdArkfXPZ7HAHV9lChoBkdAd6o4A0bcXWgHTdABaAhHQK5IAowVTJh1fZQoaAZHQHJyxKUVzp5oB02yAWgIR0CuSkiqyWzGdX2UKGgGR0BeHkqhDgIhaAdNuAFoCEdArkrGPo3aSXV9lChoBkdANUVUVBUrCmgHTdwBaAhHQK5OLGn4wh51fZQoaAZHQImVNQO4G2VoB03oA2gIR0CuTxUV8CxNdX2UKGgGR0Bw9lqi48U3aAdN6ANoCEdArk8/VVghKXV9lChoBkdAgqhEH2RJVmgHTegDaAhHQK5RaXUH6dl1fZQoaAZHQJCqhh6Skj5oB03oA2gIR0CuVTd0ihWYdX2UKGgGR0CLnHCk43m3aAdN6ANoCEdArlYdUhmoSHV9lChoBkdAkEnFvl2eQWgHTegDaAhHQK5WRudf9gp1fZQoaAZHQI523ZTQ3P1oB03oA2gIR0CuWHg6Mir1dX2UKGgGR0BjUPGIbfgraAdN6ANoCEdArlxrQmeDnXV9lChoBkdAhaQG1QZXMmgHTegDaAhHQK5dVFiKBNF1fZQoaAZHQI64fppvgm9oB03oA2gIR0CuXX4ekpI+dX2UKGgGR0CQU7m/WUbDaAdN6ANoCEdArl+pG6PKdXV9lChoBkdAjFG0/wAlwGgHTegDaAhHQK5jgAo5PuZ1fZQoaAZHQJGCTkGRmshoB03oA2gIR0CuZGUYsNDudX2UKGgGR0CRLZNmlImPaAdN6ANoCEdArmSOc4HX3HV9lChoBkdAlDCzmOlwcmgHTegDaAhHQK5mts5XEIh1fZQoaAZHQJDEWamXPZ9oB03oA2gIR0CuapE7OmiydX2UKGgGR0CTBry8SPELaAdN6ANoCEdArmt4igTRIHV9lChoBkdAjeArSeAd4mgHTegDaAhHQK5rogWac7R1fZQoaAZHQJG0B9Wp6yBoB03oA2gIR0CubdDc2zfKdX2UKGgGR0CQePV7Qb++aAdN6ANoCEdArnGobCJoCnV9lChoBkdAlxLBIWgvlGgHTegDaAhHQK5ykUL2HtZ1fZQoaAZHQJL3lw0fozNoB03oA2gIR0Cucrpz90ihdX2UKGgGR0CS1FI/JNj9aAdN6ANoCEdArnTqE12q1nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 93750, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.17 # 64~20.04.1-Ubuntu SMP Fri Jan 6 16:42:31 UTC 2023", "Python": "3.8.15", "Stable-Baselines3": "1.7.0a11", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb23a83fc20e2d7f185aecebabab89674809a5939eeb5daaf69e7cc85c5604d0
|
3 |
+
size 1178098
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 951.4786510294886, "std_reward": 417.570417798048, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-08T00:51:35.624917"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4c022c715312b5e3b4af1fe1e02543c5e3f0e6f28ff3b20c138fccff95dc77a
|
3 |
+
size 2136
|