erniechiew commited on
Commit
63d19e9
1 Parent(s): f334c8f

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -4.13 +/- 0.92
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -2.18 +/- 0.27
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e0f503f361ea9540b5d4a3a1f54f947dd3c968cc1376c32b2a5d85fd0d82c0f4
3
- size 108097
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4536d4417c272957fe5c8511bd7823c168cfe1734adb81e577eada55b91fcaae
3
+ size 109691
a2c-PandaReachDense-v2/data CHANGED
@@ -4,14 +4,16 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9812574550>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc_data object at 0x7f9812568cc0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
13
  ":type:": "<class 'dict'>",
14
- ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
 
 
15
  "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
  "optimizer_kwargs": {
17
  "alpha": 0.99,
@@ -41,24 +43,24 @@
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
- "num_timesteps": 2000000,
45
- "_total_timesteps": 2000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1676099947444745934,
50
- "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
53
  ":type:": "<class 'function'>",
54
- ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9RT7PlbidjrMTg8/9RT7PlbidjrMTg8/9RT7PlbidjrMTg8/9RT7PlbidjrMTg8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhQFqv5iKqb+/vh6+SDQcv0B0hL93nQa+rVCqP2VSyj/xnGy/Y8dvv2Hjq79BeKO+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD1FPs+VuJ2OsxODz8JuRw8UgNjuwHz9jv1FPs+VuJ2OsxODz8JuRw8UgNjuwHz9jv1FPs+VuJ2OsxODz8JuRw8UgNjuwHz9jv1FPs+VuJ2OsxODz8JuRw8UgNjuwHz9juUaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[0.49039426 0.00094179 0.5597961 ]\n [0.49039426 0.00094179 0.5597961 ]\n [0.49039426 0.00094179 0.5597961 ]\n [0.49039426 0.00094179 0.5597961 ]]",
60
- "desired_goal": "[[-0.9140857 -1.324542 -0.15502451]\n [-0.61017275 -1.0347977 -0.13146006]\n [ 1.330587 1.5806395 -0.92426974]\n [-0.93663615 -1.3428766 -0.31927684]]",
61
- "observation": "[[ 0.49039426 0.00094179 0.5597961 0.0095656 -0.00346394 0.00753629]\n [ 0.49039426 0.00094179 0.5597961 0.0095656 -0.00346394 0.00753629]\n [ 0.49039426 0.00094179 0.5597961 0.0095656 -0.00346394 0.00753629]\n [ 0.49039426 0.00094179 0.5597961 0.0095656 -0.00346394 0.00753629]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,29 +68,29 @@
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUDkDvpf4ajz37eg7XsLHvPd93zyT7xw+GKokPDt23TyGlmo+9RULPUFPAL2OOwU9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[-0.12814832 0.01434149 0.00710845]\n [-0.02438467 0.02728174 0.15325765]\n [ 0.01005032 0.02703392 0.22908983]\n [ 0.03395649 -0.03132558 0.0325275 ]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
75
- "use_sde": false,
76
  "sde_sample_freq": -1,
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2xZlNsiEDcCUhpRSlIwBbJRLMowBdJRHQKlf2f8Muvl1fZQoaAZoCWgPQwhLzR5oBQYHwJSGlFKUaBVLMmgWR0CpX7VR1oxpdX2UKGgGaAloD0MIfH+D9uqTFcCUhpRSlGgVSzJoFkdAqV+Qla8pTnV9lChoBmgJaA9DCG2oGOdvYgPAlIaUUpRoFUsyaBZHQKlfa4pc5bR1fZQoaAZoCWgPQwjVWpiFdq4EwJSGlFKUaBVLMmgWR0CpYG3IMjNZdX2UKGgGaAloD0MIV0EMdO2rB8CUhpRSlGgVSzJoFkdAqWBJHTZxrHV9lChoBmgJaA9DCESLbOf7qQnAlIaUUpRoFUsyaBZHQKlgJFz+3ph1fZQoaAZoCWgPQwiN8PYgBGQFwJSGlFKUaBVLMmgWR0CpX/832mHhdX2UKGgGaAloD0MIWYXNABekBMCUhpRSlGgVSzJoFkdAqWD+xdIGyHV9lChoBmgJaA9DCFrXaDnQcxnAlIaUUpRoFUsyaBZHQKlg2i5/b0x1fZQoaAZoCWgPQwi+pZwv9m4XwJSGlFKUaBVLMmgWR0CpYLV3ljmTdX2UKGgGaAloD0MIo1cDlIY6CcCUhpRSlGgVSzJoFkdAqWCQUeuFH3V9lChoBmgJaA9DCFD9g0iGDBHAlIaUUpRoFUsyaBZHQKlhjtDUmUp1fZQoaAZoCWgPQwiOW8zPDW0HwJSGlFKUaBVLMmgWR0CpYWrThHbzdX2UKGgGaAloD0MIluoCXmZYEMCUhpRSlGgVSzJoFkdAqWFGicoYvXV9lChoBmgJaA9DCKUQyCWOPArAlIaUUpRoFUsyaBZHQKlhIX668QJ1fZQoaAZoCWgPQwgxPzc0ZWcQwJSGlFKUaBVLMmgWR0CpYiBi9ZiedX2UKGgGaAloD0MINs6mI4DLEMCUhpRSlGgVSzJoFkdAqWH7t/nW8XV9lChoBmgJaA9DCJOmQdE84AzAlIaUUpRoFUsyaBZHQKlh1wqAjIJ1fZQoaAZoCWgPQwgjgnFw6RgHwJSGlFKUaBVLMmgWR0CpYbH4oJAudX2UKGgGaAloD0MIpppZSwEpC8CUhpRSlGgVSzJoFkdAqWKy7qY7aXV9lChoBmgJaA9DCGo0uRgD2xLAlIaUUpRoFUsyaBZHQKlijkz41xd1fZQoaAZoCWgPQwgpz7wcdl8PwJSGlFKUaBVLMmgWR0CpYmmN70FsdX2UKGgGaAloD0MIQ3Vz8bedDsCUhpRSlGgVSzJoFkdAqWJEbDMvAXV9lChoBmgJaA9DCJgycEBLlwbAlIaUUpRoFUsyaBZHQKljRKCg9Nh1fZQoaAZoCWgPQwjvkc1V87wDwJSGlFKUaBVLMmgWR0CpYx/4IrvtdX2UKGgGaAloD0MIJ/bQPlaQDMCUhpRSlGgVSzJoFkdAqWL7SApazXV9lChoBmgJaA9DCF3g8lgz0gfAlIaUUpRoFUsyaBZHQKli1imVJMB1fZQoaAZoCWgPQwioVImyt1QPwJSGlFKUaBVLMmgWR0CpY9mjj7yhdX2UKGgGaAloD0MI4A8//z2IEsCUhpRSlGgVSzJoFkdAqWO1FUhmoXV9lChoBmgJaA9DCPPLYIxIdArAlIaUUpRoFUsyaBZHQKljkGRmseZ1fZQoaAZoCWgPQwhzSkBMwoUPwJSGlFKUaBVLMmgWR0CpY2tRWLgodX2UKGgGaAloD0MIOe//44SpBMCUhpRSlGgVSzJoFkdAqWRohdMTOHV9lChoBmgJaA9DCE31ZP7RNxHAlIaUUpRoFUsyaBZHQKlkQ9QoCuF1fZQoaAZoCWgPQwjpYz4g0PkGwJSGlFKUaBVLMmgWR0CpZB8lXzUadX2UKGgGaAloD0MIxy+8kuQZCMCUhpRSlGgVSzJoFkdAqWP6AtnPFHV9lChoBmgJaA9DCKn5KvnYHRDAlIaUUpRoFUsyaBZHQKlk+k6cRUZ1fZQoaAZoCWgPQwj9ogT9hZ4DwJSGlFKUaBVLMmgWR0CpZNWkzoECdX2UKGgGaAloD0MI5GiOrPxyEMCUhpRSlGgVSzJoFkdAqWSw8dPtUnV9lChoBmgJaA9DCHxfXKrS1g3AlIaUUpRoFUsyaBZHQKlki9RrJsB1fZQoaAZoCWgPQwiOVyB6UuYHwJSGlFKUaBVLMmgWR0CpZY2fseGPdX2UKGgGaAloD0MIwHrct1p3EcCUhpRSlGgVSzJoFkdAqWVo+UyHmHV9lChoBmgJaA9DCN45lKEqFhbAlIaUUpRoFUsyaBZHQKllREb5uZV1fZQoaAZoCWgPQwiU3GETmVkGwJSGlFKUaBVLMmgWR0CpZR8sDnvEdX2UKGgGaAloD0MInFHzVfJxAsCUhpRSlGgVSzJoFkdAqWYgcHWz4XV9lChoBmgJaA9DCGNkyRzLWwLAlIaUUpRoFUsyaBZHQKll+8e0Xxh1fZQoaAZoCWgPQwgi3jr/dmkTwJSGlFKUaBVLMmgWR0CpZdcKXv6TdX2UKGgGaAloD0MIOltAaD3cBcCUhpRSlGgVSzJoFkdAqWWx/Tb35HV9lChoBmgJaA9DCMSVs3dGuwXAlIaUUpRoFUsyaBZHQKlmsBHTZxt1fZQoaAZoCWgPQwjQKcjPRi4GwJSGlFKUaBVLMmgWR0CpZotvwVj7dX2UKGgGaAloD0MI5XtGIjSCBsCUhpRSlGgVSzJoFkdAqWZmvUz9CXV9lChoBmgJaA9DCG4164zvaw3AlIaUUpRoFUsyaBZHQKlmQaP0Zm91fZQoaAZoCWgPQwjCFVCop28GwJSGlFKUaBVLMmgWR0CpZ0R8lXzUdX2UKGgGaAloD0MI8Gq5MxNcEcCUhpRSlGgVSzJoFkdAqWcf1pTMq3V9lChoBmgJaA9DCD+O5sjKDw/AlIaUUpRoFUsyaBZHQKlm+ygwoLJ1fZQoaAZoCWgPQwhe1sQCX9EIwJSGlFKUaBVLMmgWR0CpZtYJE6T4dX2UKGgGaAloD0MIezGUE+2KDMCUhpRSlGgVSzJoFkdAqWfXt8eCCnV9lChoBmgJaA9DCJP8iF+xZgXAlIaUUpRoFUsyaBZHQKlnsywfQrt1fZQoaAZoCWgPQwjqA8k7h7IEwJSGlFKUaBVLMmgWR0CpZ46VUuL8dX2UKGgGaAloD0MInUmbqnvEB8CUhpRSlGgVSzJoFkdAqWdpgogFHXV9lChoBmgJaA9DCFTFVPoJVxHAlIaUUpRoFUsyaBZHQKloa5imVJN1fZQoaAZoCWgPQwgqGQCquJETwJSGlFKUaBVLMmgWR0CpaEbz9S/CdX2UKGgGaAloD0MIwCZr1EPUCcCUhpRSlGgVSzJoFkdAqWgiRfWtl3V9lChoBmgJaA9DCKEuUigLnwTAlIaUUpRoFUsyaBZHQKln/SydFv11fZQoaAZoCWgPQwjgufdwyXEGwJSGlFKUaBVLMmgWR0CpaP1z6rNodX2UKGgGaAloD0MID0dX6e4aC8CUhpRSlGgVSzJoFkdAqWjYy0rsjXV9lChoBmgJaA9DCGFREaeTDArAlIaUUpRoFUsyaBZHQKlotB9kSVZ1fZQoaAZoCWgPQwg0TG2pgzwJwJSGlFKUaBVLMmgWR0CpaI8DKYAsdX2UKGgGaAloD0MIuhKB6h+kC8CUhpRSlGgVSzJoFkdAqWmTuUliSnV9lChoBmgJaA9DCOjB3Vm7zQPAlIaUUpRoFUsyaBZHQKlpbwvxpcp1fZQoaAZoCWgPQwhJgnAFFGoHwJSGlFKUaBVLMmgWR0CpaUpU5uIidX2UKGgGaAloD0MIAfbRqSsfEcCUhpRSlGgVSzJoFkdAqWklNnGsFXV9lChoBmgJaA9DCAlP6PUncRjAlIaUUpRoFUsyaBZHQKlqKToMa0h1fZQoaAZoCWgPQwi/SdOgaN4BwJSGlFKUaBVLMmgWR0CpagSwwCbMdX2UKGgGaAloD0MIt17Tg4JSAsCUhpRSlGgVSzJoFkdAqWnf/zasZHV9lChoBmgJaA9DCBKkUuxofAfAlIaUUpRoFUsyaBZHQKlpuuFpPAR1fZQoaAZoCWgPQwifOetTjukKwJSGlFKUaBVLMmgWR0CpasFS0jTsdX2UKGgGaAloD0MI+rMfKSJDBMCUhpRSlGgVSzJoFkdAqWqcs+V1OnV9lChoBmgJaA9DCBk6dlCJiwTAlIaUUpRoFUsyaBZHQKlqd/S6UaB1fZQoaAZoCWgPQwhuhhvw+YEDwJSGlFKUaBVLMmgWR0CpalLkCFK1dX2UKGgGaAloD0MIVAJiEi5ECsCUhpRSlGgVSzJoFkdAqWtWl41P33V9lChoBmgJaA9DCJHwvb9BuwbAlIaUUpRoFUsyaBZHQKlrMe4Cp3p1fZQoaAZoCWgPQwgCt+7mqa4KwJSGlFKUaBVLMmgWR0Cpaw0ygwoLdX2UKGgGaAloD0MI0QZgAyJUFcCUhpRSlGgVSzJoFkdAqWroD3dsSHV9lChoBmgJaA9DCPYjRWRYRQPAlIaUUpRoFUsyaBZHQKlr52X9itt1fZQoaAZoCWgPQwgLQQ5KmMkFwJSGlFKUaBVLMmgWR0Cpa8K7AckudX2UKGgGaAloD0MINbIrLSN1CsCUhpRSlGgVSzJoFkdAqWueBvrGBHV9lChoBmgJaA9DCP/pBgq8kwvAlIaUUpRoFUsyaBZHQKlreQWepXJ1fZQoaAZoCWgPQwh/2qhOB+IQwJSGlFKUaBVLMmgWR0CpbHlqrR0EdX2UKGgGaAloD0MIat5xio7EBMCUhpRSlGgVSzJoFkdAqWxUx/NJOHV9lChoBmgJaA9DCMlWl1MCAgfAlIaUUpRoFUsyaBZHQKlsMBoVVPx1fZQoaAZoCWgPQwiwc9NmnIYIwJSGlFKUaBVLMmgWR0CpbAry1/lRdX2UKGgGaAloD0MI2su209bIAsCUhpRSlGgVSzJoFkdAqW0KkIomX3V9lChoBmgJaA9DCL4R3bOucQzAlIaUUpRoFUsyaBZHQKls5efI0ZZ1fZQoaAZoCWgPQwiCOA8nMP0JwJSGlFKUaBVLMmgWR0CpbMEpAlfJdX2UKGgGaAloD0MIRfC/leyIE8CUhpRSlGgVSzJoFkdAqWycAmzBynV9lChoBmgJaA9DCNfep6rQgAfAlIaUUpRoFUsyaBZHQKltmmj0tiB1fZQoaAZoCWgPQwiJsUy/RDwFwJSGlFKUaBVLMmgWR0CpbXW912aEdX2UKGgGaAloD0MIuHh4z4GFB8CUhpRSlGgVSzJoFkdAqW1RBE8aGnV9lChoBmgJaA9DCAJ/+Pnv4QLAlIaUUpRoFUsyaBZHQKltK/47A+J1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
- "_n_updates": 100000,
87
- "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
90
  "ent_coef": 0.0,
91
- "vf_coef": 0.5,
92
  "max_grad_norm": 0.5,
93
  "normalize_advantage": false
94
  }
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7efe02b8e5e0>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7efe02b84c30>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
13
  ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
15
+ "log_std_init": -2,
16
+ "ortho_init": false,
17
  "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
18
  "optimizer_kwargs": {
19
  "alpha": 0.99,
 
43
  "_np_random": null
44
  },
45
  "n_envs": 4,
46
+ "num_timesteps": 5000000,
47
+ "_total_timesteps": 5000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1676299079116707651,
52
+ "learning_rate": 0.00096,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
55
  ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'collections.OrderedDict'>",
60
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA/QHPPlX6zTwPQgs//QHPPlX6zTwPQgs//QHPPlX6zTwPQgs//QHPPlX6zTwPQgs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcFbQv/Nrpr+UK8M/22JAP7qZOT49e6I/MXyqP7Y/nj++AnA/zeLhvhAkmD/2lnU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD9Ac8+VfrNPA9CCz+6s4Y8XQkLuvz8gDz9Ac8+VfrNPA9CCz+6s4Y8XQkLuvz8gDz9Ac8+VfrNPA9CCz+6s4Y8XQkLuvz8gDz9Ac8+VfrNPA9CCz+6s4Y8XQkLuvz8gDyUaA5LBEsGhpRoEnSUUpR1Lg==",
61
+ "achieved_goal": "[[0.40431204 0.02514378 0.5439767 ]\n [0.40431204 0.02514378 0.5439767 ]\n [0.40431204 0.02514378 0.5439767 ]\n [0.40431204 0.02514378 0.5439767 ]]",
62
+ "desired_goal": "[[-1.6276379 -1.3001693 1.5247674 ]\n [ 0.7515084 0.18125048 1.2693859 ]\n [ 1.331915 1.2363193 0.93754184]\n [-0.44118348 1.1886005 0.95933473]]",
63
+ "observation": "[[ 4.0431204e-01 2.5143782e-02 5.4397672e-01 1.6443122e-02\n -5.3038244e-04 1.5745632e-02]\n [ 4.0431204e-01 2.5143782e-02 5.4397672e-01 1.6443122e-02\n -5.3038244e-04 1.5745632e-02]\n [ 4.0431204e-01 2.5143782e-02 5.4397672e-01 1.6443122e-02\n -5.3038244e-04 1.5745632e-02]\n [ 4.0431204e-01 2.5143782e-02 5.4397672e-01 1.6443122e-02\n -5.3038244e-04 1.5745632e-02]]"
64
  },
65
  "_last_episode_starts": {
66
  ":type:": "<class 'numpy.ndarray'>",
 
68
  },
69
  "_last_original_obs": {
70
  ":type:": "<class 'collections.OrderedDict'>",
71
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhtqSOzOu172OwLQ9SdSwvXkFn72yr0g+elPavcuvDr6e7RA+RZgBvnsqZLxXu4Y+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
72
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
73
+ "desired_goal": "[[ 0.00448162 -0.10531273 0.08825789]\n [-0.0863424 -0.07764716 0.19598272]\n [-0.10660453 -0.13934247 0.14153144]\n [-0.12655742 -0.01392614 0.26314804]]",
74
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
75
  },
76
  "_episode_num": 0,
77
+ "use_sde": true,
78
  "sde_sample_freq": -1,
79
  "_current_progress_remaining": 0.0,
80
  "ep_info_buffer": {
81
  ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJbN6h9sBAcCUhpRSlIwBbJRLMowBdJRHQLxxrcSoOx11fZQoaAZoCWgPQwh0l8RZEXUCwJSGlFKUaBVLMmgWR0C8cZtgrpaBdX2UKGgGaAloD0MIFF/tKM4RCMCUhpRSlGgVSzJoFkdAvHGI9dNWVHV9lChoBmgJaA9DCFDkSdI1k/+/lIaUUpRoFUsyaBZHQLxxdq7ROUN1fZQoaAZoCWgPQwiv0AfL2FAJwJSGlFKUaBVLMmgWR0C8cfGB8QZodX2UKGgGaAloD0MII2jMJOplCMCUhpRSlGgVSzJoFkdAvHHfHfdhzHV9lChoBmgJaA9DCDI89rNYCgDAlIaUUpRoFUsyaBZHQLxxzK+i8Fp1fZQoaAZoCWgPQwhgWtQnuSMJwJSGlFKUaBVLMmgWR0C8cbpda+vhdX2UKGgGaAloD0MIvOoB85CJA8CUhpRSlGgVSzJoFkdAvHI0JD3M6nV9lChoBmgJaA9DCAivXdpwmAXAlIaUUpRoFUsyaBZHQLxyIb9qDbt1fZQoaAZoCWgPQwge+YOB5/4GwJSGlFKUaBVLMmgWR0C8cg9OEdvLdX2UKGgGaAloD0MIG0esxacgAsCUhpRSlGgVSzJoFkdAvHH9AlfJFXV9lChoBmgJaA9DCOXsndFWRQHAlIaUUpRoFUsyaBZHQLxydaya/h51fZQoaAZoCWgPQwhaEMr7OFoCwJSGlFKUaBVLMmgWR0C8cmNEsrd4dX2UKGgGaAloD0MIVTAqqROwB8CUhpRSlGgVSzJoFkdAvHJQ078vVXV9lChoBmgJaA9DCLKhm/2B8vq/lIaUUpRoFUsyaBZHQLxyPoMa0hN1fZQoaAZoCWgPQwit+lxtxX4BwJSGlFKUaBVLMmgWR0C8crbr9l3AdX2UKGgGaAloD0MItcGJ6NeWBsCUhpRSlGgVSzJoFkdAvHKkg/1QInV9lChoBmgJaA9DCEp7gy9MZgvAlIaUUpRoFUsyaBZHQLxykhE0BOp1fZQoaAZoCWgPQwifr1kuG13+v5SGlFKUaBVLMmgWR0C8cn/CEYfodX2UKGgGaAloD0MILjiDv1+MAMCUhpRSlGgVSzJoFkdAvHL51p0wJ3V9lChoBmgJaA9DCHlXPWAecv6/lIaUUpRoFUsyaBZHQLxy53MY/FB1fZQoaAZoCWgPQwidu10vTREDwJSGlFKUaBVLMmgWR0C8ctUCFK02dX2UKGgGaAloD0MIO1RTknVYAsCUhpRSlGgVSzJoFkdAvHLCtLcsUnV9lChoBmgJaA9DCMXm49pQkQHAlIaUUpRoFUsyaBZHQLxzO/hESdx1fZQoaAZoCWgPQwj92CQ/4ocRwJSGlFKUaBVLMmgWR0C8cymTHKfWdX2UKGgGaAloD0MIDTfg88PIDMCUhpRSlGgVSzJoFkdAvHMXIV/MGHV9lChoBmgJaA9DCNtrQe+NAQHAlIaUUpRoFUsyaBZHQLxzBNGViWp1fZQoaAZoCWgPQwjogvqWOZ0AwJSGlFKUaBVLMmgWR0C8c33zUZvUdX2UKGgGaAloD0MI7gc8MIAwAcCUhpRSlGgVSzJoFkdAvHNrjn3cpXV9lChoBmgJaA9DCLNcNjrnxwDAlIaUUpRoFUsyaBZHQLxzWSAH3UR1fZQoaAZoCWgPQwguWRXhJiP/v5SGlFKUaBVLMmgWR0C8c0bSiM5wdX2UKGgGaAloD0MIK/pDM08OCcCUhpRSlGgVSzJoFkdAvHO/RmbsnnV9lChoBmgJaA9DCIId/wWCIALAlIaUUpRoFUsyaBZHQLxzrN2TxG51fZQoaAZoCWgPQwgwLlVpiyv+v5SGlFKUaBVLMmgWR0C8c5ptvXK9dX2UKGgGaAloD0MIyvs4miMrAcCUhpRSlGgVSzJoFkdAvHOIHoouw3V9lChoBmgJaA9DCE2HTs+7MQLAlIaUUpRoFUsyaBZHQLx0AzoUzsR1fZQoaAZoCWgPQwhYq3ZNSIsCwJSGlFKUaBVLMmgWR0C8c/DUVi4KdX2UKGgGaAloD0MIlC9oIQFjBcCUhpRSlGgVSzJoFkdAvHPeeWfK6nV9lChoBmgJaA9DCFb0h2aenALAlIaUUpRoFUsyaBZHQLxzzCwr1/V1fZQoaAZoCWgPQwhwfVhv1MoBwJSGlFKUaBVLMmgWR0C8dEU6gdwOdX2UKGgGaAloD0MIilkvhnJiBcCUhpRSlGgVSzJoFkdAvHQy04R283V9lChoBmgJaA9DCBVSflLt8wTAlIaUUpRoFUsyaBZHQLx0IGff4yp1fZQoaAZoCWgPQwj5LTpZaj3/v5SGlFKUaBVLMmgWR0C8dA4oVmBfdX2UKGgGaAloD0MIliAjoMKxBcCUhpRSlGgVSzJoFkdAvHSH8UEgXHV9lChoBmgJaA9DCKZ/SSpTbAPAlIaUUpRoFUsyaBZHQLx0dYkmhM91fZQoaAZoCWgPQwjOVfMcke8AwJSGlFKUaBVLMmgWR0C8dGMz/IbPdX2UKGgGaAloD0MIu16aIsCpAsCUhpRSlGgVSzJoFkdAvHRQ4aP0ZnV9lChoBmgJaA9DCJW3I5wWvA3AlIaUUpRoFUsyaBZHQLx0yGb1AZ91fZQoaAZoCWgPQwgBMnTsoBIAwJSGlFKUaBVLMmgWR0C8dLYBvJiidX2UKGgGaAloD0MImx9/aVHfB8CUhpRSlGgVSzJoFkdAvHSjlwLmZHV9lChoBmgJaA9DCJsBLsiWZQvAlIaUUpRoFUsyaBZHQLx0kVoYekp1fZQoaAZoCWgPQwhybagY588DwJSGlFKUaBVLMmgWR0C8dQo9ovi+dX2UKGgGaAloD0MIM+GX+nnTCMCUhpRSlGgVSzJoFkdAvHT31J17pnV9lChoBmgJaA9DCMnlP6TfngjAlIaUUpRoFUsyaBZHQLx05WfbsWx1fZQoaAZoCWgPQwhwQ4zXvCoEwJSGlFKUaBVLMmgWR0C8dNMUAT7EdX2UKGgGaAloD0MIl1gZjXx+AsCUhpRSlGgVSzJoFkdAvHVJeiSJTHV9lChoBmgJaA9DCNUhN8MNuA3AlIaUUpRoFUsyaBZHQLx1NxCIDYB1fZQoaAZoCWgPQwh7+gj84QcKwJSGlFKUaBVLMmgWR0C8dSSfL9uQdX2UKGgGaAloD0MIoz1eSIeH/7+UhpRSlGgVSzJoFkdAvHUSTr3TNXV9lChoBmgJaA9DCIiE7/0NWgzAlIaUUpRoFUsyaBZHQLx1ijXnQpp1fZQoaAZoCWgPQwhn1edqK3YBwJSGlFKUaBVLMmgWR0C8dXfM4cWCdX2UKGgGaAloD0MISUvl7QiHAMCUhpRSlGgVSzJoFkdAvHVlWzWwvHV9lChoBmgJaA9DCBqIZTOH5ALAlIaUUpRoFUsyaBZHQLx1Uwx33Yd1fZQoaAZoCWgPQwhYqaCi6vcIwJSGlFKUaBVLMmgWR0C8dcqxTsIFdX2UKGgGaAloD0MI4J7nTxtV/b+UhpRSlGgVSzJoFkdAvHW4T9KmK3V9lChoBmgJaA9DCNP2r6w0qf+/lIaUUpRoFUsyaBZHQLx1peQMhHN1fZQoaAZoCWgPQwh5rYTukngCwJSGlFKUaBVLMmgWR0C8dZOYD1XedX2UKGgGaAloD0MIfhghPNp4AMCUhpRSlGgVSzJoFkdAvHYNfZ26kXV9lChoBmgJaA9DCMsSnWUW4f6/lIaUUpRoFUsyaBZHQLx1+xgRbr11fZQoaAZoCWgPQwgdWmQ730/9v5SGlFKUaBVLMmgWR0C8deinDR+jdX2UKGgGaAloD0MI/YSzW8sEAcCUhpRSlGgVSzJoFkdAvHXWWdEsrnV9lChoBmgJaA9DCJFGBU62Af6/lIaUUpRoFUsyaBZHQLx2TtoBaLZ1fZQoaAZoCWgPQwjl02NbBpwGwJSGlFKUaBVLMmgWR0C8djx0hePadX2UKGgGaAloD0MIPE88ZwuIAsCUhpRSlGgVSzJoFkdAvHYqCkGiYnV9lChoBmgJaA9DCDrrU47JggLAlIaUUpRoFUsyaBZHQLx2F8DSw4d1fZQoaAZoCWgPQwhbP/1nza8AwJSGlFKUaBVLMmgWR0C8dpB7JGONdX2UKGgGaAloD0MIk8fT8gP3BMCUhpRSlGgVSzJoFkdAvHZ+FJxvN3V9lChoBmgJaA9DCM3qHW6HpgDAlIaUUpRoFUsyaBZHQLx2a6f8Mux1fZQoaAZoCWgPQwiMuWsJ+YAEwJSGlFKUaBVLMmgWR0C8dlljiGWVdX2UKGgGaAloD0MI6DOg3owqFMCUhpRSlGgVSzJoFkdAvHbRyzXz2HV9lChoBmgJaA9DCDGyZI7lHQTAlIaUUpRoFUsyaBZHQLx2v3Kji4t1fZQoaAZoCWgPQwi6FFeVfdcBwJSGlFKUaBVLMmgWR0C8dq0ExIrfdX2UKGgGaAloD0MIYmcKndcYA8CUhpRSlGgVSzJoFkdAvHaauFHrhXV9lChoBmgJaA9DCC8012mkJQHAlIaUUpRoFUsyaBZHQLx3FGUwBYF1fZQoaAZoCWgPQwi+wRcmU4UOwJSGlFKUaBVLMmgWR0C8dwH+dbxFdX2UKGgGaAloD0MIUdzxJr9lAMCUhpRSlGgVSzJoFkdAvHbvjABT43V9lChoBmgJaA9DCJ0N+WcGMQrAlIaUUpRoFUsyaBZHQLx23TpPhyd1fZQoaAZoCWgPQwh6AIv8+qH7v5SGlFKUaBVLMmgWR0C8d1YjW07bdX2UKGgGaAloD0MI8L4qFyqfDsCUhpRSlGgVSzJoFkdAvHdDuG9HtnV9lChoBmgJaA9DCNDU6xaBMQjAlIaUUpRoFUsyaBZHQLx3MUWVNYd1fZQoaAZoCWgPQwg/OQoQBRMHwJSGlFKUaBVLMmgWR0C8dx8KgIyCdX2UKGgGaAloD0MI4uoAiLt6A8CUhpRSlGgVSzJoFkdAvHeW4gA6uHV9lChoBmgJaA9DCCgrhqsDYAPAlIaUUpRoFUsyaBZHQLx3hH09QoF1fZQoaAZoCWgPQwhoWIy61t7+v5SGlFKUaBVLMmgWR0C8d3IqXnhbdX2UKGgGaAloD0MIat5xio7kAsCUhpRSlGgVSzJoFkdAvHdf26ClJ3V9lChoBmgJaA9DCMWPMXct8RHAlIaUUpRoFUsyaBZHQLx32Hck+ot1fZQoaAZoCWgPQwj2z9OAQTIKwJSGlFKUaBVLMmgWR0C8d8YPsiSrdX2UKGgGaAloD0MIiV3b2y1pA8CUhpRSlGgVSzJoFkdAvHezn2ZiNXV9lChoBmgJaA9DCOsbmNwoMgPAlIaUUpRoFUsyaBZHQLx3oUzsQd11ZS4="
83
  },
84
  "ep_success_buffer": {
85
  ":type:": "<class 'collections.deque'>",
86
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
87
  },
88
+ "_n_updates": 156250,
89
+ "n_steps": 8,
90
  "gamma": 0.99,
91
  "gae_lambda": 1.0,
92
  "ent_coef": 0.0,
93
+ "vf_coef": 0.4,
94
  "max_grad_norm": 0.5,
95
  "normalize_advantage": false
96
  }
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:09409cddb991a942419bc72a2caf131818d705f69eefe2e004dbfa13c1825544
3
- size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb2f98e577f4fc3fbc8d73cf49734e23afe8848bc78f7aa129f869e3f156d5c4
3
+ size 45438
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d58f2d4f141bc7b02e64c2ac12951a8f74a5ef72d8f3703000261b390b78bc3e
3
- size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dd9a78a05dd18025e91c2a20c83d18eef76c6e6635ebd23ec82b6b8abbcd68c
3
+ size 46718
a2c-PandaReachDense-v2/system_info.txt CHANGED
@@ -1,4 +1,4 @@
1
- - OS: Linux-5.15.0-58-generic-x86_64-with-glibc2.17 # 64~20.04.1-Ubuntu SMP Fri Jan 6 16:42:31 UTC 2023
2
  - Python: 3.8.15
3
  - Stable-Baselines3: 1.7.0a11
4
  - PyTorch: 1.13.1+cu117
 
1
+ - OS: Linux-5.15.0-60-generic-x86_64-with-glibc2.17 # 66~20.04.1-Ubuntu SMP Wed Jan 25 09:41:30 UTC 2023
2
  - Python: 3.8.15
3
  - Stable-Baselines3: 1.7.0a11
4
  - PyTorch: 1.13.1+cu117
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9812574550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9812568cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676099947444745934, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9RT7PlbidjrMTg8/9RT7PlbidjrMTg8/9RT7PlbidjrMTg8/9RT7PlbidjrMTg8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhQFqv5iKqb+/vh6+SDQcv0B0hL93nQa+rVCqP2VSyj/xnGy/Y8dvv2Hjq79BeKO+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD1FPs+VuJ2OsxODz8JuRw8UgNjuwHz9jv1FPs+VuJ2OsxODz8JuRw8UgNjuwHz9jv1FPs+VuJ2OsxODz8JuRw8UgNjuwHz9jv1FPs+VuJ2OsxODz8JuRw8UgNjuwHz9juUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.49039426 0.00094179 0.5597961 ]\n [0.49039426 0.00094179 0.5597961 ]\n [0.49039426 0.00094179 0.5597961 ]\n [0.49039426 0.00094179 0.5597961 ]]", "desired_goal": "[[-0.9140857 -1.324542 -0.15502451]\n [-0.61017275 -1.0347977 -0.13146006]\n [ 1.330587 1.5806395 -0.92426974]\n [-0.93663615 -1.3428766 -0.31927684]]", "observation": "[[ 0.49039426 0.00094179 0.5597961 0.0095656 -0.00346394 0.00753629]\n [ 0.49039426 0.00094179 0.5597961 0.0095656 -0.00346394 0.00753629]\n [ 0.49039426 0.00094179 0.5597961 0.0095656 -0.00346394 0.00753629]\n [ 0.49039426 0.00094179 0.5597961 0.0095656 -0.00346394 0.00753629]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUDkDvpf4ajz37eg7XsLHvPd93zyT7xw+GKokPDt23TyGlmo+9RULPUFPAL2OOwU9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12814832 0.01434149 0.00710845]\n [-0.02438467 0.02728174 0.15325765]\n [ 0.01005032 0.02703392 0.22908983]\n [ 0.03395649 -0.03132558 0.0325275 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2xZlNsiEDcCUhpRSlIwBbJRLMowBdJRHQKlf2f8Muvl1fZQoaAZoCWgPQwhLzR5oBQYHwJSGlFKUaBVLMmgWR0CpX7VR1oxpdX2UKGgGaAloD0MIfH+D9uqTFcCUhpRSlGgVSzJoFkdAqV+Qla8pTnV9lChoBmgJaA9DCG2oGOdvYgPAlIaUUpRoFUsyaBZHQKlfa4pc5bR1fZQoaAZoCWgPQwjVWpiFdq4EwJSGlFKUaBVLMmgWR0CpYG3IMjNZdX2UKGgGaAloD0MIV0EMdO2rB8CUhpRSlGgVSzJoFkdAqWBJHTZxrHV9lChoBmgJaA9DCESLbOf7qQnAlIaUUpRoFUsyaBZHQKlgJFz+3ph1fZQoaAZoCWgPQwiN8PYgBGQFwJSGlFKUaBVLMmgWR0CpX/832mHhdX2UKGgGaAloD0MIWYXNABekBMCUhpRSlGgVSzJoFkdAqWD+xdIGyHV9lChoBmgJaA9DCFrXaDnQcxnAlIaUUpRoFUsyaBZHQKlg2i5/b0x1fZQoaAZoCWgPQwi+pZwv9m4XwJSGlFKUaBVLMmgWR0CpYLV3ljmTdX2UKGgGaAloD0MIo1cDlIY6CcCUhpRSlGgVSzJoFkdAqWCQUeuFH3V9lChoBmgJaA9DCFD9g0iGDBHAlIaUUpRoFUsyaBZHQKlhjtDUmUp1fZQoaAZoCWgPQwiOW8zPDW0HwJSGlFKUaBVLMmgWR0CpYWrThHbzdX2UKGgGaAloD0MIluoCXmZYEMCUhpRSlGgVSzJoFkdAqWFGicoYvXV9lChoBmgJaA9DCKUQyCWOPArAlIaUUpRoFUsyaBZHQKlhIX668QJ1fZQoaAZoCWgPQwgxPzc0ZWcQwJSGlFKUaBVLMmgWR0CpYiBi9ZiedX2UKGgGaAloD0MINs6mI4DLEMCUhpRSlGgVSzJoFkdAqWH7t/nW8XV9lChoBmgJaA9DCJOmQdE84AzAlIaUUpRoFUsyaBZHQKlh1wqAjIJ1fZQoaAZoCWgPQwgjgnFw6RgHwJSGlFKUaBVLMmgWR0CpYbH4oJAudX2UKGgGaAloD0MIpppZSwEpC8CUhpRSlGgVSzJoFkdAqWKy7qY7aXV9lChoBmgJaA9DCGo0uRgD2xLAlIaUUpRoFUsyaBZHQKlijkz41xd1fZQoaAZoCWgPQwgpz7wcdl8PwJSGlFKUaBVLMmgWR0CpYmmN70FsdX2UKGgGaAloD0MIQ3Vz8bedDsCUhpRSlGgVSzJoFkdAqWJEbDMvAXV9lChoBmgJaA9DCJgycEBLlwbAlIaUUpRoFUsyaBZHQKljRKCg9Nh1fZQoaAZoCWgPQwjvkc1V87wDwJSGlFKUaBVLMmgWR0CpYx/4IrvtdX2UKGgGaAloD0MIJ/bQPlaQDMCUhpRSlGgVSzJoFkdAqWL7SApazXV9lChoBmgJaA9DCF3g8lgz0gfAlIaUUpRoFUsyaBZHQKli1imVJMB1fZQoaAZoCWgPQwioVImyt1QPwJSGlFKUaBVLMmgWR0CpY9mjj7yhdX2UKGgGaAloD0MI4A8//z2IEsCUhpRSlGgVSzJoFkdAqWO1FUhmoXV9lChoBmgJaA9DCPPLYIxIdArAlIaUUpRoFUsyaBZHQKljkGRmseZ1fZQoaAZoCWgPQwhzSkBMwoUPwJSGlFKUaBVLMmgWR0CpY2tRWLgodX2UKGgGaAloD0MIOe//44SpBMCUhpRSlGgVSzJoFkdAqWRohdMTOHV9lChoBmgJaA9DCE31ZP7RNxHAlIaUUpRoFUsyaBZHQKlkQ9QoCuF1fZQoaAZoCWgPQwjpYz4g0PkGwJSGlFKUaBVLMmgWR0CpZB8lXzUadX2UKGgGaAloD0MIxy+8kuQZCMCUhpRSlGgVSzJoFkdAqWP6AtnPFHV9lChoBmgJaA9DCKn5KvnYHRDAlIaUUpRoFUsyaBZHQKlk+k6cRUZ1fZQoaAZoCWgPQwj9ogT9hZ4DwJSGlFKUaBVLMmgWR0CpZNWkzoECdX2UKGgGaAloD0MI5GiOrPxyEMCUhpRSlGgVSzJoFkdAqWSw8dPtUnV9lChoBmgJaA9DCHxfXKrS1g3AlIaUUpRoFUsyaBZHQKlki9RrJsB1fZQoaAZoCWgPQwiOVyB6UuYHwJSGlFKUaBVLMmgWR0CpZY2fseGPdX2UKGgGaAloD0MIwHrct1p3EcCUhpRSlGgVSzJoFkdAqWVo+UyHmHV9lChoBmgJaA9DCN45lKEqFhbAlIaUUpRoFUsyaBZHQKllREb5uZV1fZQoaAZoCWgPQwiU3GETmVkGwJSGlFKUaBVLMmgWR0CpZR8sDnvEdX2UKGgGaAloD0MInFHzVfJxAsCUhpRSlGgVSzJoFkdAqWYgcHWz4XV9lChoBmgJaA9DCGNkyRzLWwLAlIaUUpRoFUsyaBZHQKll+8e0Xxh1fZQoaAZoCWgPQwgi3jr/dmkTwJSGlFKUaBVLMmgWR0CpZdcKXv6TdX2UKGgGaAloD0MIOltAaD3cBcCUhpRSlGgVSzJoFkdAqWWx/Tb35HV9lChoBmgJaA9DCMSVs3dGuwXAlIaUUpRoFUsyaBZHQKlmsBHTZxt1fZQoaAZoCWgPQwjQKcjPRi4GwJSGlFKUaBVLMmgWR0CpZotvwVj7dX2UKGgGaAloD0MI5XtGIjSCBsCUhpRSlGgVSzJoFkdAqWZmvUz9CXV9lChoBmgJaA9DCG4164zvaw3AlIaUUpRoFUsyaBZHQKlmQaP0Zm91fZQoaAZoCWgPQwjCFVCop28GwJSGlFKUaBVLMmgWR0CpZ0R8lXzUdX2UKGgGaAloD0MI8Gq5MxNcEcCUhpRSlGgVSzJoFkdAqWcf1pTMq3V9lChoBmgJaA9DCD+O5sjKDw/AlIaUUpRoFUsyaBZHQKlm+ygwoLJ1fZQoaAZoCWgPQwhe1sQCX9EIwJSGlFKUaBVLMmgWR0CpZtYJE6T4dX2UKGgGaAloD0MIezGUE+2KDMCUhpRSlGgVSzJoFkdAqWfXt8eCCnV9lChoBmgJaA9DCJP8iF+xZgXAlIaUUpRoFUsyaBZHQKlnsywfQrt1fZQoaAZoCWgPQwjqA8k7h7IEwJSGlFKUaBVLMmgWR0CpZ46VUuL8dX2UKGgGaAloD0MInUmbqnvEB8CUhpRSlGgVSzJoFkdAqWdpgogFHXV9lChoBmgJaA9DCFTFVPoJVxHAlIaUUpRoFUsyaBZHQKloa5imVJN1fZQoaAZoCWgPQwgqGQCquJETwJSGlFKUaBVLMmgWR0CpaEbz9S/CdX2UKGgGaAloD0MIwCZr1EPUCcCUhpRSlGgVSzJoFkdAqWgiRfWtl3V9lChoBmgJaA9DCKEuUigLnwTAlIaUUpRoFUsyaBZHQKln/SydFv11fZQoaAZoCWgPQwjgufdwyXEGwJSGlFKUaBVLMmgWR0CpaP1z6rNodX2UKGgGaAloD0MID0dX6e4aC8CUhpRSlGgVSzJoFkdAqWjYy0rsjXV9lChoBmgJaA9DCGFREaeTDArAlIaUUpRoFUsyaBZHQKlotB9kSVZ1fZQoaAZoCWgPQwg0TG2pgzwJwJSGlFKUaBVLMmgWR0CpaI8DKYAsdX2UKGgGaAloD0MIuhKB6h+kC8CUhpRSlGgVSzJoFkdAqWmTuUliSnV9lChoBmgJaA9DCOjB3Vm7zQPAlIaUUpRoFUsyaBZHQKlpbwvxpcp1fZQoaAZoCWgPQwhJgnAFFGoHwJSGlFKUaBVLMmgWR0CpaUpU5uIidX2UKGgGaAloD0MIAfbRqSsfEcCUhpRSlGgVSzJoFkdAqWklNnGsFXV9lChoBmgJaA9DCAlP6PUncRjAlIaUUpRoFUsyaBZHQKlqKToMa0h1fZQoaAZoCWgPQwi/SdOgaN4BwJSGlFKUaBVLMmgWR0CpagSwwCbMdX2UKGgGaAloD0MIt17Tg4JSAsCUhpRSlGgVSzJoFkdAqWnf/zasZHV9lChoBmgJaA9DCBKkUuxofAfAlIaUUpRoFUsyaBZHQKlpuuFpPAR1fZQoaAZoCWgPQwifOetTjukKwJSGlFKUaBVLMmgWR0CpasFS0jTsdX2UKGgGaAloD0MI+rMfKSJDBMCUhpRSlGgVSzJoFkdAqWqcs+V1OnV9lChoBmgJaA9DCBk6dlCJiwTAlIaUUpRoFUsyaBZHQKlqd/S6UaB1fZQoaAZoCWgPQwhuhhvw+YEDwJSGlFKUaBVLMmgWR0CpalLkCFK1dX2UKGgGaAloD0MIVAJiEi5ECsCUhpRSlGgVSzJoFkdAqWtWl41P33V9lChoBmgJaA9DCJHwvb9BuwbAlIaUUpRoFUsyaBZHQKlrMe4Cp3p1fZQoaAZoCWgPQwgCt+7mqa4KwJSGlFKUaBVLMmgWR0Cpaw0ygwoLdX2UKGgGaAloD0MI0QZgAyJUFcCUhpRSlGgVSzJoFkdAqWroD3dsSHV9lChoBmgJaA9DCPYjRWRYRQPAlIaUUpRoFUsyaBZHQKlr52X9itt1fZQoaAZoCWgPQwgLQQ5KmMkFwJSGlFKUaBVLMmgWR0Cpa8K7AckudX2UKGgGaAloD0MINbIrLSN1CsCUhpRSlGgVSzJoFkdAqWueBvrGBHV9lChoBmgJaA9DCP/pBgq8kwvAlIaUUpRoFUsyaBZHQKlreQWepXJ1fZQoaAZoCWgPQwh/2qhOB+IQwJSGlFKUaBVLMmgWR0CpbHlqrR0EdX2UKGgGaAloD0MIat5xio7EBMCUhpRSlGgVSzJoFkdAqWxUx/NJOHV9lChoBmgJaA9DCMlWl1MCAgfAlIaUUpRoFUsyaBZHQKlsMBoVVPx1fZQoaAZoCWgPQwiwc9NmnIYIwJSGlFKUaBVLMmgWR0CpbAry1/lRdX2UKGgGaAloD0MI2su209bIAsCUhpRSlGgVSzJoFkdAqW0KkIomX3V9lChoBmgJaA9DCL4R3bOucQzAlIaUUpRoFUsyaBZHQKls5efI0ZZ1fZQoaAZoCWgPQwiCOA8nMP0JwJSGlFKUaBVLMmgWR0CpbMEpAlfJdX2UKGgGaAloD0MIRfC/leyIE8CUhpRSlGgVSzJoFkdAqWycAmzBynV9lChoBmgJaA9DCNfep6rQgAfAlIaUUpRoFUsyaBZHQKltmmj0tiB1fZQoaAZoCWgPQwiJsUy/RDwFwJSGlFKUaBVLMmgWR0CpbXW912aEdX2UKGgGaAloD0MIuHh4z4GFB8CUhpRSlGgVSzJoFkdAqW1RBE8aGnV9lChoBmgJaA9DCAJ/+Pnv4QLAlIaUUpRoFUsyaBZHQKltK/47A+J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.17 # 64~20.04.1-Ubuntu SMP Fri Jan 6 16:42:31 UTC 2023", "Python": "3.8.15", "Stable-Baselines3": "1.7.0a11", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7efe02b8e5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efe02b84c30>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 5000000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676299079116707651, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA/QHPPlX6zTwPQgs//QHPPlX6zTwPQgs//QHPPlX6zTwPQgs//QHPPlX6zTwPQgs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcFbQv/Nrpr+UK8M/22JAP7qZOT49e6I/MXyqP7Y/nj++AnA/zeLhvhAkmD/2lnU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD9Ac8+VfrNPA9CCz+6s4Y8XQkLuvz8gDz9Ac8+VfrNPA9CCz+6s4Y8XQkLuvz8gDz9Ac8+VfrNPA9CCz+6s4Y8XQkLuvz8gDz9Ac8+VfrNPA9CCz+6s4Y8XQkLuvz8gDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.40431204 0.02514378 0.5439767 ]\n [0.40431204 0.02514378 0.5439767 ]\n [0.40431204 0.02514378 0.5439767 ]\n [0.40431204 0.02514378 0.5439767 ]]", "desired_goal": "[[-1.6276379 -1.3001693 1.5247674 ]\n [ 0.7515084 0.18125048 1.2693859 ]\n [ 1.331915 1.2363193 0.93754184]\n [-0.44118348 1.1886005 0.95933473]]", "observation": "[[ 4.0431204e-01 2.5143782e-02 5.4397672e-01 1.6443122e-02\n -5.3038244e-04 1.5745632e-02]\n [ 4.0431204e-01 2.5143782e-02 5.4397672e-01 1.6443122e-02\n -5.3038244e-04 1.5745632e-02]\n [ 4.0431204e-01 2.5143782e-02 5.4397672e-01 1.6443122e-02\n -5.3038244e-04 1.5745632e-02]\n [ 4.0431204e-01 2.5143782e-02 5.4397672e-01 1.6443122e-02\n -5.3038244e-04 1.5745632e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhtqSOzOu172OwLQ9SdSwvXkFn72yr0g+elPavcuvDr6e7RA+RZgBvnsqZLxXu4Y+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00448162 -0.10531273 0.08825789]\n [-0.0863424 -0.07764716 0.19598272]\n [-0.10660453 -0.13934247 0.14153144]\n [-0.12655742 -0.01392614 0.26314804]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJbN6h9sBAcCUhpRSlIwBbJRLMowBdJRHQLxxrcSoOx11fZQoaAZoCWgPQwh0l8RZEXUCwJSGlFKUaBVLMmgWR0C8cZtgrpaBdX2UKGgGaAloD0MIFF/tKM4RCMCUhpRSlGgVSzJoFkdAvHGI9dNWVHV9lChoBmgJaA9DCFDkSdI1k/+/lIaUUpRoFUsyaBZHQLxxdq7ROUN1fZQoaAZoCWgPQwiv0AfL2FAJwJSGlFKUaBVLMmgWR0C8cfGB8QZodX2UKGgGaAloD0MII2jMJOplCMCUhpRSlGgVSzJoFkdAvHHfHfdhzHV9lChoBmgJaA9DCDI89rNYCgDAlIaUUpRoFUsyaBZHQLxxzK+i8Fp1fZQoaAZoCWgPQwhgWtQnuSMJwJSGlFKUaBVLMmgWR0C8cbpda+vhdX2UKGgGaAloD0MIvOoB85CJA8CUhpRSlGgVSzJoFkdAvHI0JD3M6nV9lChoBmgJaA9DCAivXdpwmAXAlIaUUpRoFUsyaBZHQLxyIb9qDbt1fZQoaAZoCWgPQwge+YOB5/4GwJSGlFKUaBVLMmgWR0C8cg9OEdvLdX2UKGgGaAloD0MIG0esxacgAsCUhpRSlGgVSzJoFkdAvHH9AlfJFXV9lChoBmgJaA9DCOXsndFWRQHAlIaUUpRoFUsyaBZHQLxydaya/h51fZQoaAZoCWgPQwhaEMr7OFoCwJSGlFKUaBVLMmgWR0C8cmNEsrd4dX2UKGgGaAloD0MIVTAqqROwB8CUhpRSlGgVSzJoFkdAvHJQ078vVXV9lChoBmgJaA9DCLKhm/2B8vq/lIaUUpRoFUsyaBZHQLxyPoMa0hN1fZQoaAZoCWgPQwit+lxtxX4BwJSGlFKUaBVLMmgWR0C8crbr9l3AdX2UKGgGaAloD0MItcGJ6NeWBsCUhpRSlGgVSzJoFkdAvHKkg/1QInV9lChoBmgJaA9DCEp7gy9MZgvAlIaUUpRoFUsyaBZHQLxykhE0BOp1fZQoaAZoCWgPQwifr1kuG13+v5SGlFKUaBVLMmgWR0C8cn/CEYfodX2UKGgGaAloD0MILjiDv1+MAMCUhpRSlGgVSzJoFkdAvHL51p0wJ3V9lChoBmgJaA9DCHlXPWAecv6/lIaUUpRoFUsyaBZHQLxy53MY/FB1fZQoaAZoCWgPQwidu10vTREDwJSGlFKUaBVLMmgWR0C8ctUCFK02dX2UKGgGaAloD0MIO1RTknVYAsCUhpRSlGgVSzJoFkdAvHLCtLcsUnV9lChoBmgJaA9DCMXm49pQkQHAlIaUUpRoFUsyaBZHQLxzO/hESdx1fZQoaAZoCWgPQwj92CQ/4ocRwJSGlFKUaBVLMmgWR0C8cymTHKfWdX2UKGgGaAloD0MIDTfg88PIDMCUhpRSlGgVSzJoFkdAvHMXIV/MGHV9lChoBmgJaA9DCNtrQe+NAQHAlIaUUpRoFUsyaBZHQLxzBNGViWp1fZQoaAZoCWgPQwjogvqWOZ0AwJSGlFKUaBVLMmgWR0C8c33zUZvUdX2UKGgGaAloD0MI7gc8MIAwAcCUhpRSlGgVSzJoFkdAvHNrjn3cpXV9lChoBmgJaA9DCLNcNjrnxwDAlIaUUpRoFUsyaBZHQLxzWSAH3UR1fZQoaAZoCWgPQwguWRXhJiP/v5SGlFKUaBVLMmgWR0C8c0bSiM5wdX2UKGgGaAloD0MIK/pDM08OCcCUhpRSlGgVSzJoFkdAvHO/RmbsnnV9lChoBmgJaA9DCIId/wWCIALAlIaUUpRoFUsyaBZHQLxzrN2TxG51fZQoaAZoCWgPQwgwLlVpiyv+v5SGlFKUaBVLMmgWR0C8c5ptvXK9dX2UKGgGaAloD0MIyvs4miMrAcCUhpRSlGgVSzJoFkdAvHOIHoouw3V9lChoBmgJaA9DCE2HTs+7MQLAlIaUUpRoFUsyaBZHQLx0AzoUzsR1fZQoaAZoCWgPQwhYq3ZNSIsCwJSGlFKUaBVLMmgWR0C8c/DUVi4KdX2UKGgGaAloD0MIlC9oIQFjBcCUhpRSlGgVSzJoFkdAvHPeeWfK6nV9lChoBmgJaA9DCFb0h2aenALAlIaUUpRoFUsyaBZHQLxzzCwr1/V1fZQoaAZoCWgPQwhwfVhv1MoBwJSGlFKUaBVLMmgWR0C8dEU6gdwOdX2UKGgGaAloD0MIilkvhnJiBcCUhpRSlGgVSzJoFkdAvHQy04R283V9lChoBmgJaA9DCBVSflLt8wTAlIaUUpRoFUsyaBZHQLx0IGff4yp1fZQoaAZoCWgPQwj5LTpZaj3/v5SGlFKUaBVLMmgWR0C8dA4oVmBfdX2UKGgGaAloD0MIliAjoMKxBcCUhpRSlGgVSzJoFkdAvHSH8UEgXHV9lChoBmgJaA9DCKZ/SSpTbAPAlIaUUpRoFUsyaBZHQLx0dYkmhM91fZQoaAZoCWgPQwjOVfMcke8AwJSGlFKUaBVLMmgWR0C8dGMz/IbPdX2UKGgGaAloD0MIu16aIsCpAsCUhpRSlGgVSzJoFkdAvHRQ4aP0ZnV9lChoBmgJaA9DCJW3I5wWvA3AlIaUUpRoFUsyaBZHQLx0yGb1AZ91fZQoaAZoCWgPQwgBMnTsoBIAwJSGlFKUaBVLMmgWR0C8dLYBvJiidX2UKGgGaAloD0MImx9/aVHfB8CUhpRSlGgVSzJoFkdAvHSjlwLmZHV9lChoBmgJaA9DCJsBLsiWZQvAlIaUUpRoFUsyaBZHQLx0kVoYekp1fZQoaAZoCWgPQwhybagY588DwJSGlFKUaBVLMmgWR0C8dQo9ovi+dX2UKGgGaAloD0MIM+GX+nnTCMCUhpRSlGgVSzJoFkdAvHT31J17pnV9lChoBmgJaA9DCMnlP6TfngjAlIaUUpRoFUsyaBZHQLx05WfbsWx1fZQoaAZoCWgPQwhwQ4zXvCoEwJSGlFKUaBVLMmgWR0C8dNMUAT7EdX2UKGgGaAloD0MIl1gZjXx+AsCUhpRSlGgVSzJoFkdAvHVJeiSJTHV9lChoBmgJaA9DCNUhN8MNuA3AlIaUUpRoFUsyaBZHQLx1NxCIDYB1fZQoaAZoCWgPQwh7+gj84QcKwJSGlFKUaBVLMmgWR0C8dSSfL9uQdX2UKGgGaAloD0MIoz1eSIeH/7+UhpRSlGgVSzJoFkdAvHUSTr3TNXV9lChoBmgJaA9DCIiE7/0NWgzAlIaUUpRoFUsyaBZHQLx1ijXnQpp1fZQoaAZoCWgPQwhn1edqK3YBwJSGlFKUaBVLMmgWR0C8dXfM4cWCdX2UKGgGaAloD0MISUvl7QiHAMCUhpRSlGgVSzJoFkdAvHVlWzWwvHV9lChoBmgJaA9DCBqIZTOH5ALAlIaUUpRoFUsyaBZHQLx1Uwx33Yd1fZQoaAZoCWgPQwhYqaCi6vcIwJSGlFKUaBVLMmgWR0C8dcqxTsIFdX2UKGgGaAloD0MI4J7nTxtV/b+UhpRSlGgVSzJoFkdAvHW4T9KmK3V9lChoBmgJaA9DCNP2r6w0qf+/lIaUUpRoFUsyaBZHQLx1peQMhHN1fZQoaAZoCWgPQwh5rYTukngCwJSGlFKUaBVLMmgWR0C8dZOYD1XedX2UKGgGaAloD0MIfhghPNp4AMCUhpRSlGgVSzJoFkdAvHYNfZ26kXV9lChoBmgJaA9DCMsSnWUW4f6/lIaUUpRoFUsyaBZHQLx1+xgRbr11fZQoaAZoCWgPQwgdWmQ730/9v5SGlFKUaBVLMmgWR0C8deinDR+jdX2UKGgGaAloD0MI/YSzW8sEAcCUhpRSlGgVSzJoFkdAvHXWWdEsrnV9lChoBmgJaA9DCJFGBU62Af6/lIaUUpRoFUsyaBZHQLx2TtoBaLZ1fZQoaAZoCWgPQwjl02NbBpwGwJSGlFKUaBVLMmgWR0C8djx0hePadX2UKGgGaAloD0MIPE88ZwuIAsCUhpRSlGgVSzJoFkdAvHYqCkGiYnV9lChoBmgJaA9DCDrrU47JggLAlIaUUpRoFUsyaBZHQLx2F8DSw4d1fZQoaAZoCWgPQwhbP/1nza8AwJSGlFKUaBVLMmgWR0C8dpB7JGONdX2UKGgGaAloD0MIk8fT8gP3BMCUhpRSlGgVSzJoFkdAvHZ+FJxvN3V9lChoBmgJaA9DCM3qHW6HpgDAlIaUUpRoFUsyaBZHQLx2a6f8Mux1fZQoaAZoCWgPQwiMuWsJ+YAEwJSGlFKUaBVLMmgWR0C8dlljiGWVdX2UKGgGaAloD0MI6DOg3owqFMCUhpRSlGgVSzJoFkdAvHbRyzXz2HV9lChoBmgJaA9DCDGyZI7lHQTAlIaUUpRoFUsyaBZHQLx2v3Kji4t1fZQoaAZoCWgPQwi6FFeVfdcBwJSGlFKUaBVLMmgWR0C8dq0ExIrfdX2UKGgGaAloD0MIYmcKndcYA8CUhpRSlGgVSzJoFkdAvHaauFHrhXV9lChoBmgJaA9DCC8012mkJQHAlIaUUpRoFUsyaBZHQLx3FGUwBYF1fZQoaAZoCWgPQwi+wRcmU4UOwJSGlFKUaBVLMmgWR0C8dwH+dbxFdX2UKGgGaAloD0MIUdzxJr9lAMCUhpRSlGgVSzJoFkdAvHbvjABT43V9lChoBmgJaA9DCJ0N+WcGMQrAlIaUUpRoFUsyaBZHQLx23TpPhyd1fZQoaAZoCWgPQwh6AIv8+qH7v5SGlFKUaBVLMmgWR0C8d1YjW07bdX2UKGgGaAloD0MI8L4qFyqfDsCUhpRSlGgVSzJoFkdAvHdDuG9HtnV9lChoBmgJaA9DCNDU6xaBMQjAlIaUUpRoFUsyaBZHQLx3MUWVNYd1fZQoaAZoCWgPQwg/OQoQBRMHwJSGlFKUaBVLMmgWR0C8dx8KgIyCdX2UKGgGaAloD0MI4uoAiLt6A8CUhpRSlGgVSzJoFkdAvHeW4gA6uHV9lChoBmgJaA9DCCgrhqsDYAPAlIaUUpRoFUsyaBZHQLx3hH09QoF1fZQoaAZoCWgPQwhoWIy61t7+v5SGlFKUaBVLMmgWR0C8d3IqXnhbdX2UKGgGaAloD0MIat5xio7kAsCUhpRSlGgVSzJoFkdAvHdf26ClJ3V9lChoBmgJaA9DCMWPMXct8RHAlIaUUpRoFUsyaBZHQLx32Hck+ot1fZQoaAZoCWgPQwj2z9OAQTIKwJSGlFKUaBVLMmgWR0C8d8YPsiSrdX2UKGgGaAloD0MIiV3b2y1pA8CUhpRSlGgVSzJoFkdAvHezn2ZiNXV9lChoBmgJaA9DCOsbmNwoMgPAlIaUUpRoFUsyaBZHQLx3oUzsQd11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 156250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-60-generic-x86_64-with-glibc2.17 # 66~20.04.1-Ubuntu SMP Wed Jan 25 09:41:30 UTC 2023", "Python": "3.8.15", "Stable-Baselines3": "1.7.0a11", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -4.133633702713996, "std_reward": 0.9184906004922099, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-11T16:15:43.553718"}
 
1
+ {"mean_reward": -2.1762933230027555, "std_reward": 0.26593862637490806, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-14T00:40:51.750132"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e88e18f0aba523289bc371659beaefccb715c1b2b7834b7292549cb366ebfd29
3
  size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76e391e5b00ae2ea5efea7c321ffbcc8b5aa91fba2c0400741adab45ab71585b
3
  size 3056