---
base_model: eryk-mazus/tinyllama-with-custom-tokenizer
tags:
- generated_from_trainer
model-index:
- name: workspace/tmp/
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.3.0`
```yaml
base_model: eryk-mazus/tinyllama-with-custom-tokenizer
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
is_llama_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: eryk-mazus/polka-pretrain-en-pl-v1
type: completion # format from earlier
field: text # Optional[str] default: text, field to use for completion data
dataset_prepared_path:
val_set_size: 0.05
output_dir: /workspace/tmp/
sequence_len: 2048
sample_packing: false
adapter:
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: polka
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 1
lr_scheduler:
learning_rate: 0.00005
optimizer: adamw_torch
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
warmup_steps: 0
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
eval_steps: 1000
save_steps: 1000
save_total_limit: 2
debug:
deepspeed:
fsdp:
fsdp_config:
special_tokens:
bos_token: ""
eos_token: ""
unk_token: ""
```
# workspace/tmp/
This model is a fine-tuned version of [eryk-mazus/tinyllama-with-custom-tokenizer](https://huggingface.co/eryk-mazus/tinyllama-with-custom-tokenizer) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8795
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 3.0469 | 0.01 | 1000 | 3.0497 |
| 2.664 | 0.02 | 2000 | 2.6586 |
| 2.5018 | 0.04 | 3000 | 2.4944 |
| 2.5955 | 0.05 | 4000 | 2.3988 |
| 2.2783 | 0.06 | 5000 | 2.3338 |
| 2.3171 | 0.07 | 6000 | 2.2852 |
| 2.189 | 0.08 | 7000 | 2.2459 |
| 2.3594 | 0.09 | 8000 | 2.2153 |
| 2.1882 | 0.11 | 9000 | 2.1882 |
| 2.2699 | 0.12 | 10000 | 2.1659 |
| 2.1273 | 0.13 | 11000 | 2.1469 |
| 2.1041 | 0.14 | 12000 | 2.1291 |
| 2.1698 | 0.15 | 13000 | 2.1138 |
| 2.2126 | 0.16 | 14000 | 2.1004 |
| 2.1065 | 0.18 | 15000 | 2.0886 |
| 2.0589 | 0.19 | 16000 | 2.0764 |
| 2.0537 | 0.2 | 17000 | 2.0663 |
| 1.9746 | 0.21 | 18000 | 2.0569 |
| 2.2128 | 0.22 | 19000 | 2.0477 |
| 2.1342 | 0.23 | 20000 | 2.0393 |
| 2.0643 | 0.25 | 21000 | 2.0312 |
| 2.2776 | 0.26 | 22000 | 2.0240 |
| 1.94 | 0.27 | 23000 | 2.0173 |
| 1.8249 | 0.28 | 24000 | 2.0111 |
| 1.966 | 0.29 | 25000 | 2.0049 |
| 1.9351 | 0.31 | 26000 | 1.9994 |
| 1.9563 | 0.32 | 27000 | 1.9947 |
| 1.9496 | 0.33 | 28000 | 1.9878 |
| 2.0127 | 0.34 | 29000 | 1.9835 |
| 2.0043 | 0.35 | 30000 | 1.9794 |
| 2.0227 | 0.36 | 31000 | 1.9748 |
| 1.9308 | 0.38 | 32000 | 1.9704 |
| 1.9183 | 0.39 | 33000 | 1.9655 |
| 1.9919 | 0.4 | 34000 | 1.9620 |
| 1.9351 | 0.41 | 35000 | 1.9580 |
| 1.9103 | 0.42 | 36000 | 1.9537 |
| 1.7521 | 0.43 | 37000 | 1.9512 |
| 1.9567 | 0.45 | 38000 | 1.9454 |
| 2.022 | 0.46 | 39000 | 1.9426 |
| 1.8526 | 0.47 | 40000 | 1.9398 |
| 1.8912 | 0.48 | 41000 | 1.9370 |
| 2.0546 | 0.49 | 42000 | 1.9334 |
| 2.0607 | 0.5 | 43000 | 1.9308 |
| 2.0078 | 0.52 | 44000 | 1.9279 |
| 1.889 | 0.53 | 45000 | 1.9253 |
| 1.8587 | 0.54 | 46000 | 1.9222 |
| 1.8571 | 0.55 | 47000 | 1.9199 |
| 1.8806 | 0.56 | 48000 | 1.9178 |
| 1.8483 | 0.58 | 49000 | 1.9150 |
| 1.7862 | 0.59 | 50000 | 1.9130 |
| 1.8989 | 0.6 | 51000 | 1.9102 |
| 1.9389 | 0.61 | 52000 | 1.9083 |
| 1.9301 | 0.62 | 53000 | 1.9065 |
| 1.9522 | 0.63 | 54000 | 1.9046 |
| 1.883 | 0.65 | 55000 | 1.9027 |
| 1.9647 | 0.66 | 56000 | 1.9002 |
| 1.9284 | 0.67 | 57000 | 1.8988 |
| 1.8836 | 0.68 | 58000 | 1.8974 |
| 1.8472 | 0.69 | 59000 | 1.8956 |
| 2.1232 | 0.7 | 60000 | 1.8945 |
| 1.8571 | 0.72 | 61000 | 1.8933 |
| 1.8043 | 0.73 | 62000 | 1.8918 |
| 1.9468 | 0.74 | 63000 | 1.8906 |
| 1.9173 | 0.75 | 64000 | 1.8896 |
| 1.7762 | 0.76 | 65000 | 1.8880 |
| 2.032 | 0.77 | 66000 | 1.8876 |
| 1.9362 | 0.79 | 67000 | 1.8867 |
| 1.8308 | 0.8 | 68000 | 1.8854 |
| 1.9289 | 0.81 | 69000 | 1.8847 |
| 1.9467 | 0.82 | 70000 | 1.8841 |
| 1.8798 | 0.83 | 71000 | 1.8835 |
| 1.8868 | 0.84 | 72000 | 1.8828 |
| 1.8905 | 0.86 | 73000 | 1.8820 |
| 1.9508 | 0.87 | 74000 | 1.8816 |
| 1.7983 | 0.88 | 75000 | 1.8813 |
| 1.7693 | 0.89 | 76000 | 1.8806 |
| 1.7371 | 0.9 | 77000 | 1.8804 |
| 1.8705 | 0.92 | 78000 | 1.8802 |
| 1.8707 | 0.93 | 79000 | 1.8799 |
| 1.9113 | 0.94 | 80000 | 1.8799 |
| 2.1314 | 0.95 | 81000 | 1.8797 |
| 1.9132 | 0.96 | 82000 | 1.8795 |
| 2.0349 | 0.97 | 83000 | 1.8796 |
| 1.7939 | 0.99 | 84000 | 1.8795 |
| 1.8357 | 1.0 | 85000 | 1.8795 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0