--- base_model: eryk-mazus/tinyllama-with-custom-tokenizer tags: - generated_from_trainer model-index: - name: workspace/tmp/ results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: eryk-mazus/tinyllama-with-custom-tokenizer model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer is_llama_derived_model: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: eryk-mazus/polka-pretrain-en-pl-v1 type: completion # format from earlier field: text # Optional[str] default: text, field to use for completion data dataset_prepared_path: val_set_size: 0.05 output_dir: /workspace/tmp/ sequence_len: 2048 sample_packing: false adapter: lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: polka wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 4 num_epochs: 1 lr_scheduler: learning_rate: 0.00005 optimizer: adamw_torch adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 0.00001 max_grad_norm: 1.0 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false warmup_steps: 0 gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true eval_steps: 1000 save_steps: 1000 save_total_limit: 2 debug: deepspeed: fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# workspace/tmp/ This model is a fine-tuned version of [eryk-mazus/tinyllama-with-custom-tokenizer](https://huggingface.co/eryk-mazus/tinyllama-with-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.0469 | 0.01 | 1000 | 3.0497 | | 2.664 | 0.02 | 2000 | 2.6586 | | 2.5018 | 0.04 | 3000 | 2.4944 | | 2.5955 | 0.05 | 4000 | 2.3988 | | 2.2783 | 0.06 | 5000 | 2.3338 | | 2.3171 | 0.07 | 6000 | 2.2852 | | 2.189 | 0.08 | 7000 | 2.2459 | | 2.3594 | 0.09 | 8000 | 2.2153 | | 2.1882 | 0.11 | 9000 | 2.1882 | | 2.2699 | 0.12 | 10000 | 2.1659 | | 2.1273 | 0.13 | 11000 | 2.1469 | | 2.1041 | 0.14 | 12000 | 2.1291 | | 2.1698 | 0.15 | 13000 | 2.1138 | | 2.2126 | 0.16 | 14000 | 2.1004 | | 2.1065 | 0.18 | 15000 | 2.0886 | | 2.0589 | 0.19 | 16000 | 2.0764 | | 2.0537 | 0.2 | 17000 | 2.0663 | | 1.9746 | 0.21 | 18000 | 2.0569 | | 2.2128 | 0.22 | 19000 | 2.0477 | | 2.1342 | 0.23 | 20000 | 2.0393 | | 2.0643 | 0.25 | 21000 | 2.0312 | | 2.2776 | 0.26 | 22000 | 2.0240 | | 1.94 | 0.27 | 23000 | 2.0173 | | 1.8249 | 0.28 | 24000 | 2.0111 | | 1.966 | 0.29 | 25000 | 2.0049 | | 1.9351 | 0.31 | 26000 | 1.9994 | | 1.9563 | 0.32 | 27000 | 1.9947 | | 1.9496 | 0.33 | 28000 | 1.9878 | | 2.0127 | 0.34 | 29000 | 1.9835 | | 2.0043 | 0.35 | 30000 | 1.9794 | | 2.0227 | 0.36 | 31000 | 1.9748 | | 1.9308 | 0.38 | 32000 | 1.9704 | | 1.9183 | 0.39 | 33000 | 1.9655 | | 1.9919 | 0.4 | 34000 | 1.9620 | | 1.9351 | 0.41 | 35000 | 1.9580 | | 1.9103 | 0.42 | 36000 | 1.9537 | | 1.7521 | 0.43 | 37000 | 1.9512 | | 1.9567 | 0.45 | 38000 | 1.9454 | | 2.022 | 0.46 | 39000 | 1.9426 | | 1.8526 | 0.47 | 40000 | 1.9398 | | 1.8912 | 0.48 | 41000 | 1.9370 | | 2.0546 | 0.49 | 42000 | 1.9334 | | 2.0607 | 0.5 | 43000 | 1.9308 | | 2.0078 | 0.52 | 44000 | 1.9279 | | 1.889 | 0.53 | 45000 | 1.9253 | | 1.8587 | 0.54 | 46000 | 1.9222 | | 1.8571 | 0.55 | 47000 | 1.9199 | | 1.8806 | 0.56 | 48000 | 1.9178 | | 1.8483 | 0.58 | 49000 | 1.9150 | | 1.7862 | 0.59 | 50000 | 1.9130 | | 1.8989 | 0.6 | 51000 | 1.9102 | | 1.9389 | 0.61 | 52000 | 1.9083 | | 1.9301 | 0.62 | 53000 | 1.9065 | | 1.9522 | 0.63 | 54000 | 1.9046 | | 1.883 | 0.65 | 55000 | 1.9027 | | 1.9647 | 0.66 | 56000 | 1.9002 | | 1.9284 | 0.67 | 57000 | 1.8988 | | 1.8836 | 0.68 | 58000 | 1.8974 | | 1.8472 | 0.69 | 59000 | 1.8956 | | 2.1232 | 0.7 | 60000 | 1.8945 | | 1.8571 | 0.72 | 61000 | 1.8933 | | 1.8043 | 0.73 | 62000 | 1.8918 | | 1.9468 | 0.74 | 63000 | 1.8906 | | 1.9173 | 0.75 | 64000 | 1.8896 | | 1.7762 | 0.76 | 65000 | 1.8880 | | 2.032 | 0.77 | 66000 | 1.8876 | | 1.9362 | 0.79 | 67000 | 1.8867 | | 1.8308 | 0.8 | 68000 | 1.8854 | | 1.9289 | 0.81 | 69000 | 1.8847 | | 1.9467 | 0.82 | 70000 | 1.8841 | | 1.8798 | 0.83 | 71000 | 1.8835 | | 1.8868 | 0.84 | 72000 | 1.8828 | | 1.8905 | 0.86 | 73000 | 1.8820 | | 1.9508 | 0.87 | 74000 | 1.8816 | | 1.7983 | 0.88 | 75000 | 1.8813 | | 1.7693 | 0.89 | 76000 | 1.8806 | | 1.7371 | 0.9 | 77000 | 1.8804 | | 1.8705 | 0.92 | 78000 | 1.8802 | | 1.8707 | 0.93 | 79000 | 1.8799 | | 1.9113 | 0.94 | 80000 | 1.8799 | | 2.1314 | 0.95 | 81000 | 1.8797 | | 1.9132 | 0.96 | 82000 | 1.8795 | | 2.0349 | 0.97 | 83000 | 1.8796 | | 1.7939 | 0.99 | 84000 | 1.8795 | | 1.8357 | 1.0 | 85000 | 1.8795 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0