File size: 61,758 Bytes
a23a233 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 |
#!/usr/bin/env python
# coding=utf-8
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the Flax library models for connectionist temporal classification (CTC) speech recognition.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import logging
import math
import os
import sys
import time
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Union
import datasets
import numpy as np
from datasets import DatasetDict, load_dataset, load_metric
from tqdm import tqdm
import flax
import jax
import jax.numpy as jnp
import optax
import transformers
import wandb as wandb
from flax import core, jax_utils, struct, traverse_util
from flax.jax_utils import unreplicate, pad_shard_unpad
from flax.training.common_utils import get_metrics, shard, shard_prng_key
from huggingface_hub import Repository
from models import Wav2Vec2Config, FlaxWav2Vec2ForCTC
from optax._src import linear_algebra
from transformers import (
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
HfArgumentParser,
TrainingArguments,
is_tensorboard_available,
)
from transformers.file_utils import get_full_repo_name
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.17.0.dev0")
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
logger = logging.getLogger(__name__)
@flax.struct.dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
feature_extractor_name: Optional[str] = field(
default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
freeze_feature_encoder: bool = field(
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
)
activation_dropout: float = field(
default=0.1,
metadata={
"help": "The hidden activation dropout probability in the embeddings, encoder, and pooler."
},
)
hidden_dropout: float = field(
default=0.1,
metadata={
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
},
)
feat_proj_dropout: float = field(
default=0.0,
metadata={
"help": "The feat proj dropout probability for feature encoder representations."
},
)
mask_time_prob: float = field(
default=0.1,
metadata={
"help": "The spec aug dropout probability for feature encoder representations."
},
)
@flax.struct.dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: str = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
text_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
)
dataset_cache_dir: Optional[str] = field(
default=None, metadata={"help": "Path to cache directory for saving and loading datasets"}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_test_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of test examples to this "
"value if set."
},
)
audio_column_name: str = field(
default="audio",
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
)
text_column_name: str = field(
default="text",
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
)
max_duration_in_seconds: float = field(
default=20.0,
metadata={
"help": "Filter audio files in the training set that are longer than `max_duration_in_seconds` seconds"
},
)
min_duration_in_seconds: float = field(
default=0.0, metadata={"help": "Filter audio files in the training set that are shorter than `min_duration_in_seconds` seconds"}
)
max_label_length: Optional[int] = field(
default=512,
metadata={
"help": "The minimum total sequence length for target text after tokenization. Sequences shorter "
"than this will be filtered."
},
)
min_label_length: Optional[int] = field(
default=0,
metadata={
"help": "The minimum total sequence length for target text after tokenization. Sequences shorter "
"than this will be filtered."
},
)
max_eval_duration_in_seconds: float = field(
default=None,
metadata={
"help": "Filter audio files in the eval/test set that are longer than `max_duration_in_seconds` seconds"
},
)
pad_input_to_multiple_of: Optional[int] = field(
default=32000,
metadata={
"help": "If set will pad the input sequence to a multiple of the provided value. "
"This is important to avoid triggering recompilations on TPU."
},
)
pad_target_to_multiple_of: Optional[int] = field(
default=None,
metadata={
"help": "If set will pad the target sequence to a multiple of the provided value. "
"This is important to avoid triggering recompilations on TPU."
},
)
preprocessing_only: bool = field(
default=False,
metadata={
"help": "Whether to only do data preprocessing and skip training. "
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
"so that the cached datasets can consequently be loaded in distributed training"
},
)
train_split_name: str = field(
default="train",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
eval_split_name: str = field(
default="validation",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
wandb_project: str = field(
default="flax-speech-recognition-ctc",
metadata={"help": "The name of the wandb project."},
)
wandb_name: str = field(
default=None,
metadata={"help": "The name of the wandb run."},
)
wandb_job_type: str = field(
default="CTC",
metadata={"help": "The name of the wandb job type."},
)
test_split_name: str = field(
default="test",
metadata={"help": "The name of the test data set split to use (via the datasets library). Defaults to 'test'"},
)
# @flax.struct.dataclass
@dataclass
class FlaxTrainingArguments(TrainingArguments):
precision: str = field(
default="full",
metadata={
"help": "Whether to enable mixed-precision training. If true, the optimizer is stored in half-precision (bfloat16) and computations are executed in half-precision"
"**Note that this only specifies the dtype of the computation and optimizer state. It does not influence the dtype of model parameters.**"
},
)
matmul_precision: str = field(
default="default",
metadata={
"help": "Default floating-point precision of internal computations used in TPU matrix multiplications and convolutions. "
"This configuration option controls the default precision for JAX operations that take an optional precision argument (e.g. `lax.conv_general_dilated` and `lax.dot`). "
"This configuration option does not change the behaviours of such calls with explicit precision arguments; "
"it only changes the behaviors of calls with no such argument provided. "
"One of `['highest', 'float32', 'high', 'bfloat16_3x', 'default', 'bfloat16', 'fastest', None]`."
},
)
multisteps: bool = field(
default=False,
metadata={
"help": "Whether to use Optax MultiSteps for gradient accumulation. If `False` (default) and `gradient_accumulation_steps > 1`, "
"a custom gradient accumulation implementation will be employed."
},
)
def to_fp32(t):
return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t)
def to_bf16(t):
return jax.tree_map(lambda x: x.astype(jnp.bfloat16) if x.dtype == jnp.float32 else x, t)
class MixedPrecisionTrainState(struct.PyTreeNode):
"""Train state for use with a single Optax optimizer.
Adapted from flax train_state https://github.com/google/flax/blob/main/flax/training/train_state.py
Synopsis::
state = TrainState.create(
apply_fn=model.apply,
params=variables['params'],
tx=tx)
grad_fn = jax.grad(make_loss_fn(state.apply_fn))
for batch in data:
grads = grad_fn(state.params, batch)
state = state.apply_gradients(grads=grads)
Args:
step: Counter starts at 0 and is incremented by every call to
`.apply_gradients()`.
apply_fn: Usually set to `model.apply()`. Kept in this dataclass for
convenience to have a shorter params list for the `train_step()` function
in your training loop.
params: The parameters to be updated by `tx` and used by `apply_fn`.
tx: An Optax gradient transformation.
opt_state: The state for `tx`.
dropout_rng: PRNG key for stochastic operations.
bf16: Whether to use bf16 16-bit (mixed) precision training instead of 32-bit training.
"""
step: int
apply_fn: Callable = struct.field(pytree_node=False)
get_attention_mask_fn: Callable = struct.field(pytree_node=False)
params: core.FrozenDict[str, Any]
tx: optax.GradientTransformation = struct.field(pytree_node=False)
opt_state: optax.OptState
dropout_rng: jnp.ndarray
max_grad_norm: Optional[float] = 1.0
def apply_gradients(self, *, grads, to_dtype, **kwargs):
"""Updates `step`, `params`, `opt_state` and `**kwargs` in return value.
Note that internally this function calls `.tx.update()` followed by a call
to `optax.apply_updates()` to update `params` and `opt_state`.
Args:
grads: Gradients that have the same pytree structure as `.params`.
**kwargs: Additional dataclass attributes that should be `.replace()`-ed.
Returns:
An updated instance of `self` with `step` incremented by one, `params`
and `opt_state` updated by applying `grads`, and additional attributes
replaced as specified by `kwargs`.
"""
# clip gradients by global l2 norm
casted_max_grad_norm = to_dtype(self.max_grad_norm)
g_norm = linear_algebra.global_norm(grads)
g_norm = jnp.maximum(casted_max_grad_norm, g_norm)
grads = jax.tree_map(lambda t: (t / g_norm) * casted_max_grad_norm, grads)
# perform update step in fp32 and subsequently downcast optimizer states if mixed precision training
# grads and opt_state in bf16 (need to upcast), params in fp32 (leave as is)
updates, new_opt_state = self.tx.update(to_fp32(grads), to_fp32(self.opt_state), self.params)
new_params = optax.apply_updates(self.params, updates)
return self.replace(
step=self.step + 1,
params=new_params,
opt_state=to_dtype(new_opt_state),
**kwargs,
)
@classmethod
def create(cls, *, apply_fn, params, tx, to_dtype, **kwargs):
"""Creates a new instance with `step=0` and initialized `opt_state`."""
# downcast optimizer state to bf16 if mixed-precision training
opt_state = tx.init(to_dtype(params)) if tx is not None else None
return cls(
step=0,
apply_fn=apply_fn,
params=params,
tx=tx,
opt_state=opt_state,
**kwargs,
)
def replicate(self):
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
@flax.struct.dataclass
class FlaxDataCollatorSpeechSeq2SeqWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
processor ([`Wav2Vec2Processor`])
The processor used for proccessing the data.
decoder_start_token_id (:obj: `int`)
The begin-of-sentence of the decoder.
input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned input sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned target sequences (according to the model's padding side and padding index).
See above for details.
max_input_length (:obj:`float`, `optional`):
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
pad_input_to_multiple_of (:obj:`int`, `optional`):
If set will pad the input sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
pad_target_to_multiple_of (:obj:`int`, `optional`):
If set will pad the target sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
processor: Any
input_padding: Union[bool, str] = "longest"
label_padding: Union[bool, str] = "max_length"
pad_input_to_multiple_of: Optional[int] = None
pad_to_multiple_of_label: Optional[int] = None
max_input_length: Optional[float] = None
max_label_length: Optional[float] = None
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
# split inputs and labels since they have to be of different lengths and need
# different padding methods
input_features = [{"input_values": feature["input_values"]} for feature in features]
label_features = [{"input_ids": feature["labels"]} for feature in features]
# reformat list to dict and set to pytorch format
batch = self.processor.feature_extractor.pad(
input_features,
max_length=self.max_input_length,
padding=self.input_padding,
pad_to_multiple_of=self.pad_input_to_multiple_of,
return_tensors="np",
)
labels_batch = self.processor.tokenizer.pad(
label_features,
max_length=self.max_label_length,
padding=self.label_padding,
pad_to_multiple_of=self.pad_to_multiple_of_label,
return_tensors="np",
)
labels = labels_batch["input_ids"]
labels = np.ma.array(labels, mask=np.not_equal(labels_batch.attention_mask, 1))
labels = labels.filled(fill_value=-100)
batch["labels"] = labels
return batch
def get_grouped_indices(
dataset, batch_size: int, rng: Optional[List[int]] = None, mega_batch_mult: Optional[int] = None
) -> np.array:
"""
Adapted from the `get_length_grouped_indices` function in the PyTorch Trainer utils file (https://github.com/huggingface/transformers/blob/main/src/transformers/trainer_pt_utils.py#L486)
Function that returns a list of indices in which each slice of `batch_size` consecutive indices correspond to elements of similar
lengths. To do this, the indices are:
- randomly permuted (if a JAX rng is specified)
- grouped in mega-batches of size `mega_batch_mult * batch_size`
- sorted by length in each mega-batch
The result is the concatenation of all mega-batches, with the batch of `batch_size` containing the element of
maximum length placed first, so that an OOM happens sooner rather than later.
"""
lengths = dataset["input_length"]
# Default for mega_batch_mult: 50 or the number to get 4 megabatches, whichever is smaller.
if mega_batch_mult is None:
mega_batch_mult = min(len(lengths) // (batch_size * 4), 50)
# Just in case, for tiny datasets
if mega_batch_mult == 0:
mega_batch_mult = 1
# We need to use JAX for the random permutation as the PRNG key will be set based on the seed outside of the sampler.
num_samples = len(lengths)
indices = jax.random.permutation(rng, np.arange(num_samples)) if rng is not None else np.arange(num_samples)
megabatch_size = mega_batch_mult * batch_size
megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)]
megabatches = [list(sorted(megabatch, key=lambda i: lengths[i], reverse=True)) for megabatch in megabatches]
# The rest is to get the biggest batch first.
# Since each megabatch is sorted by descending length, the longest element is the first
megabatch_maximums = [lengths[megabatch[0]] for megabatch in megabatches]
max_idx = np.argmax(megabatch_maximums).item()
# Switch to put the longest batch in first position
# (note that this is different to the PT grouped sampler in which we only put the longest element in the first position, and not its batch)
megabatches[0], megabatches[max_idx] = megabatches[max_idx], megabatches[0]
megabatches = np.array([i for megabatch in megabatches for i in megabatch])
return megabatches
def generate_batch_splits(samples_idx: np.ndarray, batch_size: int, drop_last=True) -> np.ndarray:
"""Generate batches of data for a specified batch size from sample indices. If the dataset size is not divisible by
the batch size and `drop_last` is `True`, the last incomplete batch is dropped. Else, it is returned."""
num_samples = len(samples_idx)
if drop_last:
samples_to_remove = num_samples % batch_size
if samples_to_remove != 0:
samples_idx = samples_idx[:-samples_to_remove]
sections_split = num_samples // batch_size
samples_idx = samples_idx.reshape((sections_split, batch_size))
else:
sections_split = math.ceil(num_samples / batch_size)
samples_idx = np.array_split(samples_idx, sections_split)
return samples_idx
def write_train_metric(summary_writer, train_metrics, train_time, step):
summary_writer.scalar("train_time", train_time, step)
train_metrics = get_metrics(train_metrics)
for key, vals in train_metrics.items():
tag = f"train_{key}"
for i, val in enumerate(vals):
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
def write_eval_metric(summary_writer, eval_metrics, step, pred_str=None):
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"eval_{metric_name}", value, step)
if pred_str is not None:
# write output actual predictions for debugging
summary_writer.text("eval_predictions", "\n".join(pred_str), step)
def write_wandb_log(metrics, step, prefix=None):
if jax.process_index() == 0:
log_metrics = {}
for k, v in metrics.items():
if "layer" in k:
log_metrics[f"{k}/"] = v
elif prefix is not None:
log_metrics[f"{prefix}/{k}"] = v
else:
log_metrics[k] = v
wandb.log(log_metrics, step)
def write_wandb_pred(pred_str, label_str, step, final_step=False, prefix="eval"):
if jax.process_index() == 0:
# convert str data to a wandb compatible format
str_data = [[label_str[i], pred_str[i]] for i in range(len(pred_str))]
if not final_step:
# we'll log the first 50 predictions for each intermediate epoch
wandb.log(
{
f"{prefix}/step_{int(step / 1000)}k": wandb.Table(
columns=["label_str", "pred_str"], data=str_data[:50]
)
},
step,
)
else:
# we'll log all predictions for the last epoch
wandb.log(
{
f"{prefix}/step_{int(step / 1000)}k_all": wandb.Table(
columns=["label_str", "pred_str"], data=str_data
)
},
step,
)
def create_learning_rate_fn(
num_train_steps: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
"""Returns a linear warmup, linear_decay learning rate function."""
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
decay_fn = optax.linear_schedule(
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
)
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
return schedule_fn
def ctc_loss(
logits,
logits_attention_mask,
labels,
blank_id,
loss_reduction="mean",
output_emission_dict=False,
log_epsilon=-100000.0,
):
"""Computes CTC loss.
This function performs forward computation over an FSA with `N * 2` states
where `N` is the max number of labels. The states are split into two groups:
Phi states and emission states. a phi-state accepts repetition of
phi (blank)-symbols and transits to emission state when the correct label is
observed. An emission state accepts repetition of the label and transits to
the next phi states at any time (so called epsilon-transition).
Below, `B` denotes the batch size, `T` denotes the time steps in `logits`,
and `N` denotes the time steps in `labels`.
Args:
logits: (B, T, K)-array containing log-probabilities of each class.
logitpaddings: (B, T)-array. Padding indicators for `logits`.
labels: (B, N)-array containing reference integer labels.
labelpaddings: (B, N)-array. Padding indicators for `labels`. Currently,
`labels` must be right-padded, i.e. each row of `labelpaddings` must be
repetition of zeroes, followed by repetition of ones.
blank_id: Id for blank token.
loss_reduction: one of "mean", "sum", "default"
- "none": no reduction is applied.
- "mean": output loss will be divided by target lengths and then the
mean over the batch is taken.
- "sum": output loss are summed over batch
output_emission_dict: whether to output additional information about the emission probs
Returns:
A pair of `(per_seq_loss, aux)`.
per_seq_loss:
(B,)-array containing loss values for each sequence in the batch.
aux: Dictionary containing interim variables used for computing losses.
aux['logalpha_phi']: (T, B, N+1)-array. Log-forward-probabilities of each
phi-state corresponding to the n-th label.
aux['logalpha_emit']: (T, B, N)-array. Log-forward-probabilities of each
emission-state corresponding to the n-th label.
aux['logprobs_phi']: (T, B, 1)-array. Probability of the phi-symbol
corresponding to each time frame.
aux['logprobs_emit']: (T, B, N)-array. Probability of the n-th label
corresponding to each time frame.
"""
# label paddings are indicated by -100
labelpaddings = labels < 0
# logit paddings are the inverse of attention_mask
logitpaddings = ~logits_attention_mask
# Copied from https://github.com/tensorflow/lingvo/blob/master/lingvo/jax/layers/ctc_objectives.py
batchsize, unused_maxinputlen, num_classes = logits.shape
batchsize_, maxlabellen = labels.shape
logprobs = jax.nn.log_softmax(logits)
labellens = maxlabellen - jnp.sum(labelpaddings, axis=1).astype(jnp.int32)
# repeat[b, n] == 1.0 when label[b, n] == label[b, n+1].
repeat = (labels[:, :-1] == labels[:, 1:]).astype(jnp.float32)
repeat = jnp.pad(repeat, ((0, 0), (0, 1)))
logprobs_phi = logprobs[:, :, blank_id : blank_id + 1] # [B, T, 1]
logprobs_phi = jnp.transpose(logprobs_phi, (1, 0, 2)) # [T, B, 1]
one_hot = jax.nn.one_hot(labels, num_classes=num_classes) # [B, N, K]
logprobs_emit = jnp.einsum("btk,bnk->btn", logprobs, one_hot)
logprobs_emit = jnp.transpose(logprobs_emit, (1, 0, 2)) # [T, B, N]
logalpha_phi_init = jnp.ones((batchsize, maxlabellen + 1)) * log_epsilon # [B, N]
logalpha_phi_init = logalpha_phi_init.at[:, 0].set(0.0)
logalpha_emit_init = jnp.ones((batchsize, maxlabellen)) * log_epsilon # [B, N]
def loop_body(prev, x):
prev_phi, prev_emit = prev
# emit-to-phi epsilon transition, except if the next label is repetition
prev_phi_orig = prev_phi
prev_phi = prev_phi.at[:, 1:].set(jnp.logaddexp(prev_phi[:, 1:], prev_emit + log_epsilon * repeat))
logprob_emit, logprob_phi, pad = x
# phi-to-emit transition
next_emit = jnp.logaddexp(prev_phi[:, :-1] + logprob_emit, prev_emit + logprob_emit)
# self-loop transition
next_phi = prev_phi + logprob_phi
# emit-to-phi blank transition only when the next label is repetition
next_phi = next_phi.at[:, 1:].set(
jnp.logaddexp(next_phi[:, 1:], prev_emit + logprob_phi + log_epsilon * (1.0 - repeat))
)
pad = pad.reshape((batchsize, 1))
next_emit = pad * prev_emit + (1.0 - pad) * next_emit
next_phi = pad * prev_phi_orig + (1.0 - pad) * next_phi
return (next_phi, next_emit), (next_phi, next_emit)
xs = (logprobs_emit, logprobs_phi, logitpaddings.transpose((1, 0)))
_, (logalpha_phi, logalpha_emit) = jax.lax.scan(loop_body, (logalpha_phi_init, logalpha_emit_init), xs)
# last row needs to be updated with the last epsilon transition
logalpha_phi_last = logalpha_phi[-1].at[:, 1:].set(jnp.logaddexp(logalpha_phi[-1, :, 1:], logalpha_emit[-1]))
logalpha_phi = logalpha_phi.at[-1].set(logalpha_phi_last)
# extract per_seq_loss
one_hot = jax.nn.one_hot(labellens, num_classes=maxlabellen + 1) # [B, N+1]
per_seq_loss = -jnp.einsum("bn,bn->b", logalpha_phi_last, one_hot)
if loss_reduction == "mean":
target_lengths = labelpaddings.shape[-1] - labelpaddings.sum(axis=-1)
loss = (per_seq_loss / target_lengths).mean()
elif loss_reduction == "sum":
loss = per_seq_loss.sum()
else:
loss = per_seq_loss
if not output_emission_dict:
return loss
return loss, {
"logalpha_phi": logalpha_phi,
"logalpha_emit": logalpha_emit,
"logprobs_phi": logprobs_phi,
"logprobs_emit": logprobs_emit,
}
def main():
# 1. Parse input arguments
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, FlaxTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# 2. Setup logging
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
# Set the verbosity to info of the Transformers logger.
# We only want one process per machine to log things on the screen.
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
if jax.process_index() == 0:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# Set up wandb run
if jax.process_index() == 0:
wandb.init(project=data_args.wandb_project, name=data_args.wandb_name, job_type=data_args.wandb_job_type)
logger.info("Training/evaluation parameters %s", training_args)
# Set the default TPU matmul precision and display the number of devices
jax.config.update("jax_default_matmul_precision", training_args.matmul_precision)
logger.info(f"JAX devices: {jax.device_count()}, matmul precision: {training_args.matmul_precision}")
# 4. Load dataset
raw_datasets = DatasetDict()
if training_args.do_train:
raw_datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.train_split_name,
cache_dir=data_args.dataset_cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
if training_args.do_eval:
raw_datasets["eval"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.eval_split_name,
cache_dir=data_args.dataset_cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
if training_args.do_predict:
test_split = data_args.test_split_name.split("+")
for split in test_split:
raw_datasets[split] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=split,
cache_dir=data_args.dataset_cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
if not training_args.do_train and not training_args.do_eval and not training_args.do_predict:
raise ValueError(
"Cannot not train, not do evaluation and not do prediction. At least one of "
"training, evaluation or prediction has to be done."
)
# if not training, there is no need to run multiple epochs
if not training_args.do_train:
training_args.num_train_epochs = 1
if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names:
raise ValueError(
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
"Make sure to set `--audio_column_name` to the correct audio column - one of "
f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
)
if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names:
raise ValueError(
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
"Make sure to set `--text_column_name` to the correct text column - one of "
f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
)
# 5. Load pretrained model, tokenizer, and feature extractor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
config = Wav2Vec2Config.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
feature_extractor = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# update config according to training args, model args, and tokenizer attributes
config.update(
{
"gradient_checkpointing": training_args.gradient_checkpointing,
"activation_dropout": model_args.activation_dropout,
"hidden_dropout": model_args.hidden_dropout,
"feat_proj_dropout": model_args.feat_proj_dropout,
"mask_time_prob": model_args.mask_time_prob,
"vocab_size": tokenizer.vocab_size,
}
)
if training_args.precision == "full_mixed":
dtype = jnp.bfloat16
training_args.mixed_precision = True
elif training_args.precision == "half_mixed":
dtype = jnp.bfloat16
training_args.mixed_precision = False
else:
dtype = jnp.float32
training_args.mixed_precision = False
model = FlaxWav2Vec2ForCTC.from_pretrained(
model_args.model_name_or_path,
config=config,
dtype=dtype,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# 6. Resample speech dataset ALWAYS
raw_datasets = raw_datasets.cast_column(
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
)
# 7. Preprocessing the datasets.
# We need to read the audio files as arrays and tokenize the targets.
max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)
min_input_length = int(data_args.min_duration_in_seconds * feature_extractor.sampling_rate)
max_eval_input_length = int(data_args.max_eval_duration_in_seconds * feature_extractor.sampling_rate) if data_args.max_eval_duration_in_seconds else None
max_target_length = data_args.max_label_length
min_target_length = data_args.min_label_length
pad_input_to_multiple_of = data_args.pad_input_to_multiple_of
audio_column_name = data_args.audio_column_name
num_workers = data_args.preprocessing_num_workers
text_column_name = data_args.text_column_name
model_input_name = feature_extractor.model_input_names[0]
if training_args.do_train and data_args.max_train_samples is not None:
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
if training_args.do_eval and data_args.max_eval_samples is not None:
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
if training_args.do_predict and data_args.max_test_samples is not None:
for split in test_split:
raw_datasets[split] = raw_datasets[split].select(range(data_args.max_eval_samples))
def prepare_dataset(batch):
# Pre-process audio
sample = batch[audio_column_name]
# normalise audio (mean, std) to (0, 1)
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
# process audio length
batch[model_input_name] = inputs.input_values[0]
batch["input_length"] = len(batch["input_values"])
input_str = batch[text_column_name]
batch["labels"] = tokenizer(input_str).input_ids
batch["labels_length"] = len(batch["labels"])
return batch
vectorized_datasets = raw_datasets.map(
prepare_dataset,
remove_columns=next(iter(raw_datasets.values())).column_names,
num_proc=num_workers,
desc="preprocess dataset",
)
# filter training data with inputs longer than max_input_length
def is_audio_in_length_range(length):
return min_input_length < length < max_input_length
if training_args.do_train:
vectorized_datasets["train"] = vectorized_datasets["train"].filter(
is_audio_in_length_range,
num_proc=num_workers,
input_columns=["input_length"],
)
# filter data with targets shorter than min_target_length or longer than max_target_length
def is_labels_in_length_range(length):
return min_target_length < length < max_target_length
if training_args.do_train:
vectorized_datasets["train"] = vectorized_datasets["train"].filter(
is_labels_in_length_range,
num_proc=num_workers,
input_columns=["labels_length"],
)
if max_eval_input_length is not None:
# filter training data with inputs longer than max_input_length
def is_eval_audio_in_length_range(length):
return min_input_length < length < max_eval_input_length
if training_args.do_eval:
vectorized_datasets["eval"] = vectorized_datasets["eval"].filter(
is_eval_audio_in_length_range,
num_proc=num_workers,
input_columns=["input_length"],
)
if training_args.do_predict:
for split in test_split:
vectorized_datasets[split] = vectorized_datasets[split].filter(
is_eval_audio_in_length_range,
num_proc=num_workers,
input_columns=["input_length"],
)
# for large datasets it is advised to run the preprocessing on a
# single machine first with `args.preprocessing_only` since there will mostly likely
# be a timeout when running the script in distributed mode.
# In a second step `args.preprocessing_only` can then be set to `False` to load the
# cached dataset
if data_args.preprocessing_only:
cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
logger.info(f"Data preprocessing finished. Files cached at {cache}.")
return
# 8. Load Metrics
wer_metric = load_metric("wer")
cer_metric = load_metric("cer")
def compute_metrics(pred_ids: List[List[int]], label_ids: List[List[int]]):
padded_ids = np.where(np.asarray(label_ids) == -100, tokenizer.pad_token_id, np.asarray(label_ids))
pred_str = tokenizer.batch_decode(pred_ids)
# we do not want to group tokens when computing the metrics
label_str = tokenizer.batch_decode(padded_ids, group_tokens=False)
wer = wer_metric.compute(predictions=pred_str, references=label_str)
cer = cer_metric.compute(predictions=pred_str, references=label_str)
return {"wer": wer, "cer": cer}, pred_str, label_str
# 9. save feature extractor, tokenizer and config
feature_extractor.save_pretrained(training_args.output_dir)
tokenizer.save_pretrained(training_args.output_dir)
config.save_pretrained(training_args.output_dir)
processor = AutoProcessor.from_pretrained(training_args.output_dir)
data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding(
processor=processor,
input_padding="longest",
pad_input_to_multiple_of=pad_input_to_multiple_of,
max_label_length=data_args.max_label_length,
)
# Enable tensorboard only on the master node
has_tensorboard = is_tensorboard_available()
if has_tensorboard and jax.process_index() == 0:
try:
from flax.metrics.tensorboard import SummaryWriter
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
except ImportError as ie:
has_tensorboard = False
logger.warning(
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
)
else:
logger.warning(
"Unable to display metrics through TensorBoard because the package is not installed: "
"Please run `pip install tensorboard` to enable."
)
# 10. Handle the repository creation
if training_args.push_to_hub:
with open(os.path.join(training_args.output_dir, ".gitattributes"), "r+") as f:
git_lfs_extensions = f.read()
if "*.wandb" not in git_lfs_extensions:
f.write("*.wandb filter=lfs diff=lfs merge=lfs -text")
if training_args.hub_model_id is None:
repo_name = get_full_repo_name(
Path(training_args.output_dir).absolute().name, token=training_args.hub_token
)
else:
repo_name = training_args.hub_model_id
repo = Repository(training_args.output_dir, clone_from=repo_name)
# 11. Initialize our training
rng = jax.random.PRNGKey(training_args.seed)
rng, dropout_rng = jax.random.split(rng)
# Store some constants
max_steps = int(training_args.max_steps)
gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
batch_size_per_update = train_batch_size * gradient_accumulation_steps
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
to_dtype = to_bf16 if training_args.mixed_precision else to_fp32
if training_args.do_train:
num_train_samples = len(vectorized_datasets["train"])
steps_per_epoch = num_train_samples // batch_size_per_update
if max_steps > 0:
num_epochs = -(training_args.max_steps // -steps_per_epoch)
total_train_steps = max_steps
else:
num_epochs = int(training_args.num_train_epochs)
total_train_steps = steps_per_epoch * num_epochs
# Create learning rate schedule
# Create learning rate schedule
linear_decay_lr_schedule_fn = create_learning_rate_fn(
total_train_steps,
training_args.warmup_steps,
training_args.learning_rate,
)
# We use Optax's "masking" functionality to not apply weight decay
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
# mask boolean with the same structure as the parameters.
# The mask is True for parameters that should be decayed.
# Note that this mask is specifically adapted for FlaxWav2Vec2 and FlaxBart.
# For FlaxT5, one should correct the layer norm parameter naming
# accordingly - see `run_t5_mlm_flax.py` e.g.
def decay_mask_fn(params):
flat_params = traverse_util.flatten_dict(params)
layer_norm_params = [
(name, "scale")
for name in ["layer_norm", "self_attn_layer_norm", "layernorm_embedding", "final_layer_norm"]
]
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_params) for path in flat_params}
return traverse_util.unflatten_dict(flat_mask)
if training_args.adafactor:
# Create Adafactor optimizer
optim = optax.adafactor(
learning_rate=linear_decay_lr_schedule_fn,
dtype_momentum=jnp.bfloat16 if training_args.mixed_precision else jnp.float32,
weight_decay_rate=training_args.weight_decay,
weight_decay_mask=decay_mask_fn,
)
else:
# Create AdamW optimizer
optim = optax.adamw(
learning_rate=linear_decay_lr_schedule_fn,
b1=training_args.adam_beta1,
b2=training_args.adam_beta2,
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
mask=decay_mask_fn,
)
# Optax MultiSteps for gradient accumulation. We'll only call this optimizer transformation if gradient accumulation is required (i.e. gradient accumulation steps > 1)
if training_args.multisteps and gradient_accumulation_steps > 1:
optim = optax.MultiSteps(optim, gradient_accumulation_steps, use_grad_mean=False)
else:
num_epochs = 0
total_train_steps = 0
num_train_samples = 0
optim = None
# Setup train state
state = MixedPrecisionTrainState.create(
apply_fn=model.__call__,
get_attention_mask_fn=model._get_feature_vector_attention_mask,
params=model.params,
tx=optim,
to_dtype=to_dtype,
dropout_rng=dropout_rng,
max_grad_norm=training_args.max_grad_norm,
)
# Replicate the train state on each device
state = state.replicate()
blank_id = model.config.pad_token_id
# Define gradient update step fn
def train_step(state, batch):
# only one single rng per grad step, with or without accumulation, as the graph should be identical over one effective training batch
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
def compute_loss(params, minibatch):
labels = minibatch.pop("labels")
logits = state.apply_fn(
**minibatch,
params=params,
dropout_rng=dropout_rng,
freeze_feature_encoder=model_args.freeze_feature_encoder,
train=True,
)[0]
logits_mask = state.get_attention_mask_fn(logits.shape[1], batch["attention_mask"])
loss = ctc_loss(logits, logits_mask, labels, blank_id, loss_reduction="mean")
return loss
grad_fn = jax.value_and_grad(compute_loss)
if gradient_accumulation_steps == 1 or training_args.multisteps:
loss, grad = grad_fn(to_dtype(state.params), batch)
# Custom gradient accumulation
else:
# add a first dimension over gradient_accumulation_steps for minibatch slices
batch = jax.tree_map(
lambda x: x.reshape(
gradient_accumulation_steps, training_args.per_device_train_batch_size, *x.shape[1::]
),
batch,
)
def accum_minibatch_step(accum_grad, minibatch):
# compute loss, num labels and grad over minibatch and accumulate
loss, grad = grad_fn(to_dtype(state.params), minibatch)
return jax.tree_map(jnp.add, accum_grad, grad), loss
# create an initial state for accumulating losses, num labels and gradients
init_grad = jax.tree_map(jnp.zeros_like, to_dtype(state.params))
# loop accum minibatch step over the number of gradient accumulation steps
grad, loss = jax.lax.scan(accum_minibatch_step, init_grad, batch)
# update state
new_state = state.apply_gradients(
grads=grad,
dropout_rng=new_dropout_rng,
to_dtype=to_dtype,
)
# compute gradient norms over all layers and globally for detailed monitoring
layer_grad_norm = jax.tree_map(jnp.linalg.norm, grad)
logs = {
"layer_grad_norm": layer_grad_norm,
"grad_norm": jnp.linalg.norm(jax.tree_util.tree_leaves(layer_grad_norm)),
}
# compute parameter norms over all layers and globally for detailed monitoring
layer_param_norm = jax.tree_map(jnp.linalg.norm, new_state.params)
logs["layer_param_norm"] = layer_param_norm
logs["param_norm"] = jnp.linalg.norm(jax.tree_util.tree_leaves(layer_param_norm))
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
metrics.update(logs)
metrics = jax.lax.pmean(metrics, axis_name="batch")
# metrics = to_fp32(metrics)
return new_state, metrics
# Define eval fn
def eval_step(params, batch):
labels = batch.pop("labels")
logits = model(**batch, params=params, train=False)[0]
logits_mask = model._get_feature_vector_attention_mask(logits.shape[1], batch["attention_mask"])
loss = ctc_loss(logits, logits_mask, labels, blank_id, loss_reduction="mean")
pred_ids = jnp.argmax(logits, axis=-1)
# summarize metrics
metrics = {"loss": loss}
metrics = jax.lax.pmean(metrics, axis_name="batch")
# metrics = to_fp32(metrics)
return metrics, pred_ids
# Create parallel version of the train and eval step
if training_args.do_train:
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
if training_args.do_eval or training_args.do_predict:
p_eval_step = jax.pmap(eval_step, "batch")
def run_evaluation(step, final_step=False):
if training_args.do_eval:
# ======================== Evaluating ==============================
eval_metrics = []
eval_preds = []
eval_labels = []
# Generate eval set by sequentially sampling indices from the eval dataset and grouping by length
eval_samples_idx = get_grouped_indices(vectorized_datasets["eval"], eval_batch_size)
eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False)
for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
samples = [vectorized_datasets["eval"][int(idx)] for idx in batch_idx]
batch = data_collator(samples)
labels = batch["labels"]
try:
metrics, pred_ids = pad_shard_unpad(p_eval_step)(state.params, batch.data, min_device_batch=per_device_eval_batch_size)
except TypeError:
continue
eval_preds.extend(jax.device_get(pred_ids.reshape(-1, pred_ids.shape[-1])))
eval_metrics.append(metrics)
eval_labels.extend(labels)
# normalize eval metrics
eval_metrics = get_metrics(eval_metrics)
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
eval_metrics = to_fp32(eval_metrics)
# always run compute metrics
error_rate_metric, pred_str, label_str = compute_metrics(eval_preds, eval_labels)
eval_metrics.update(error_rate_metric)
error_rate_desc = " ".join([f"Eval {key}: {value} |" for key, value in error_rate_metric.items()])
# Print metrics and update progress bar
desc = f"Step... ({step}/{total_train_steps} | Eval Loss: {eval_metrics['loss']} | {error_rate_desc})"
epochs.write(desc)
epochs.desc = desc
# Save metrics
write_wandb_log(eval_metrics, step, prefix="eval")
write_wandb_pred(pred_str, label_str, step, final_step=final_step)
# if has_tensorboard and jax.process_index() == 0:
# write_eval_metric(summary_writer, eval_metrics, step, pred_str=pred_str)
def save_checkpoint(step):
# save and push checkpoint to the hub
if jax.process_index() == 0:
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
model.save_pretrained(training_args.output_dir, params=params)
tokenizer.save_pretrained(training_args.output_dir)
if training_args.push_to_hub:
repo.push_to_hub(commit_message=f"{wandb.run.id}: saving weights and logs of step {int(step / 1000)}k", blocking=False)
logger.info("***** Running training *****")
logger.info(f" Num examples = {num_train_samples}")
logger.info(f" Num Epochs = {num_epochs}")
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
logger.info(f" Num gradient accumulation steps = {gradient_accumulation_steps}")
logger.info(f" Total train batch size (w. parallel & distributed) = {batch_size_per_update}")
logger.info(f" Total optimization steps = {total_train_steps}")
logger.info(f" Gradient checkpointing: {config.gradient_checkpointing}")
logger.info(f" Use scan: {config.use_scan}")
logger.info(f" Fuse matmuls: {config.fuse_matmuls}")
train_time = cur_step = 0
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
for epoch in epochs:
if training_args.do_train:
# ======================== Training ================================
train_start = time.time()
# Create sampling rng
rng, input_rng = jax.random.split(rng)
# Generate an epoch by randomly shuffling sampling indices from the train dataset and grouping by length
train_samples_idx = get_grouped_indices(vectorized_datasets["train"], batch_size_per_update, input_rng)
train_batch_idx = generate_batch_splits(train_samples_idx, batch_size_per_update)
# Gather the indices for creating the batch and do a training step
for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1), 1):
samples = [vectorized_datasets["train"][int(idx)] for idx in batch_idx]
batch = data_collator(samples)
batch = shard(batch.data)
try:
state, train_metric = p_train_step(state, batch)
except TypeError as e:
logger.warning("Encountered following error: \n", e)
cur_step = epoch * (num_train_samples // batch_size_per_update) + step
if cur_step % training_args.logging_steps == 0:
# Save metrics
train_metric = unreplicate(train_metric)
train_time += time.time() - train_start
# need to upcast all device arrays to fp32 for wandb logging (jnp.bfloat16 not supported) -> do this here OR in train_step
write_wandb_log(to_fp32(train_metric), cur_step, prefix="train")
# we won't log to tensorboard for now (it is fiddly logging param and grad norms on a layer-by-layer basis)
# if has_tensorboard and jax.process_index() == 0:
# write_train_metric(summary_writer, train_metrics, train_time, cur_step)
epochs.write(
f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']}, Gradient Norm: {train_metric['grad_norm']})"
)
if cur_step % total_train_steps == 0:
break
if training_args.eval_steps and cur_step % training_args.eval_steps == 0:
run_evaluation(cur_step, final_step=False)
if cur_step % training_args.save_steps == 0:
save_checkpoint(cur_step)
if training_args.eval_steps == 0 and (epoch + 1) != num_epochs:
# run evaluation at the end of the epoch if eval steps are not specified
run_evaluation(cur_step, final_step=False)
save_checkpoint(cur_step)
if training_args.do_train:
save_checkpoint(cur_step)
cur_step = max_steps if max_steps > 0 else cur_step # set step to max steps so that eval happens in alignment with training
if training_args.do_eval:
run_evaluation(cur_step, final_step=True)
# TODO: collapse 'do_predict' into the run_evaluation function
if training_args.do_predict:
for split in test_split:
# ======================== Evaluating ==============================
eval_metrics = []
eval_preds = []
eval_labels = []
# Generate eval set by sequentially sampling indices from the test dataset and grouping by length
eval_samples_idx = get_grouped_indices(vectorized_datasets[split], eval_batch_size)
eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False)
for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc=f"Predicting {split}...", position=2)):
samples = [vectorized_datasets[split][int(idx)] for idx in batch_idx]
batch = data_collator(samples)
labels = batch["labels"]
metrics, pred_ids = pad_shard_unpad(p_eval_step)(state.params, batch.data, min_device_batch=per_device_eval_batch_size)
eval_preds.extend(jax.device_get(pred_ids.reshape(-1, pred_ids.shape[-1])))
eval_metrics.append(metrics)
eval_labels.extend(labels)
# normalize eval metrics
eval_metrics = get_metrics(eval_metrics)
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
eval_metrics = to_fp32(eval_metrics)
# always run compute metrics
error_rate_metric, pred_str, label_str = compute_metrics(eval_preds, eval_labels)
eval_metrics.update(error_rate_metric)
error_rate_desc = " ".join([f"Eval {key}: {value} |" for key, value in error_rate_metric.items()])
# Print metrics and update progress bar
desc = f"Step... ({cur_step}/{total_train_steps} | Eval Loss: {eval_metrics['loss']} | {error_rate_desc})"
epochs.write(desc)
epochs.desc = desc
# Save metrics
write_wandb_log(eval_metrics, cur_step, prefix=split)
write_wandb_pred(pred_str, label_str, cur_step, final_step=True, prefix=split)
# if has_tensorboard and jax.process_index() == 0:
# write_eval_metric(summary_writer, eval_metrics, cur_step, pred_str=pred_str)
if __name__ == "__main__":
main()
|