--- language: - en tags: - esc datasets: - librispeech --- To reproduce this run, first call `get_ctc_tokenizer.py` to train the CTC tokenizer and then execute the following command to train the CTC system: ```python #!/usr/bin/env bash python run_flax_speech_recognition_ctc.py \ --model_name_or_path="esc-benchmark/wav2vec2-ctc-pretrained" \ --tokenizer_name="wav2vec2-ctc-librispeech-tokenizer" \ --dataset_name="esc-benchmark/esc-datasets" \ --dataset_config_name="librispeech" \ --output_dir="./" \ --wandb_project="wav2vec2-ctc" \ --wandb_name="wav2vec2-ctc-librispeech" \ --max_steps="50000" \ --save_steps="10000" \ --eval_steps="10000" \ --learning_rate="3e-4" \ --logging_steps="25" \ --warmup_steps="5000" \ --preprocessing_num_workers="1" \ --hidden_dropout="0.2" \ --activation_dropout="0.2" \ --feat_proj_dropout="0.2" \ --do_train \ --do_eval \ --do_predict \ --overwrite_output_dir \ --gradient_checkpointing \ --freeze_feature_encoder \ --push_to_hub \ --use_auth_token ```