File size: 19,781 Bytes
8ccbb9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Wav2Vec2 model configuration"""

import functools
import operator

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)

WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json",
    # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
}


class Wav2Vec2Config(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Wav2Vec2Model`]. It is used to instantiate an
    Wav2Vec2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Wav2Vec2
    [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32):
            Vocabulary size of the Wav2Vec2 model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`Wav2Vec2Model`] or [`TFWav2Vec2Model`]. Vocabulary size of the
            model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward
            method of [`Wav2Vec2Model`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        final_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for the final projection layer of [`Wav2Vec2ForCTC`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        feat_extract_norm (`str`, *optional*, defaults to `"group"`):
            The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
            normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
            convolutional layers.
        feat_proj_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for output of the feature encoder.
        feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the 1D convolutional layers of the feature
            extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
        feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probabilitiy for quantized feature encoder states.
        conv_dim (`Tuple[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
            A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
            feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
        conv_stride (`Tuple[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
            A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
            of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
        conv_kernel (`Tuple[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
            A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
            length of *conv_kernel* defines the number of convolutional layers and has to match the length of
            *conv_dim*.
        conv_bias (`bool`, *optional*, defaults to `False`):
            Whether the 1D convolutional layers have a bias.
        num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
            Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
            embeddings layer.
        num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
            Number of groups of 1D convolutional positional embeddings layer.
        do_stable_layer_norm (`bool`, *optional*, defaults to `False`):
            Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is
            True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is
            False` corresponds to applying layer norm after the attention layer.
        apply_spec_augment (`bool`, *optional*, defaults to `True`):
            Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
            [SpecAugment: A Simple Data Augmentation Method for Automatic Speech
            Recognition](https://arxiv.org/abs/1904.08779).
        mask_time_prob (`float`, *optional*, defaults to 0.05):
            Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
            procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
            reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
            masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
            actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
        mask_time_length (`int`, *optional*, defaults to 10):
            Length of vector span along the time axis.
        mask_time_min_masks (`int`, *optional*, defaults to 2),:
            The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
            irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
            mask_time_min_masks''
        mask_feature_prob (`float`, *optional*, defaults to 0.0):
            Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
            masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
            the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
            span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
            may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
            True`.
        mask_feature_length (`int`, *optional*, defaults to 10):
            Length of vector span along the feature axis.
        mask_feature_min_masks (`int`, *optional*, defaults to 0),:
            The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
            step, irrespectively of `mask_feature_prob`. Only relevant if
            ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
        num_codevectors_per_group (`int`, *optional*, defaults to 320):
            Number of entries in each quantization codebook (group).
        num_codevector_groups (`int`, *optional*, defaults to 2):
            Number of codevector groups for product codevector quantization.
        contrastive_logits_temperature (`float`, *optional*, defaults to 0.1):
            The temperature *kappa* in the contrastive loss.
        feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probabilitiy for the output of the feature encoder that's used by the quantizer.
        num_negatives (`int`, *optional*, defaults to 100):
            Number of negative samples for the contrastive loss.
        codevector_dim (`int`, *optional*, defaults to 256):
            Dimensionality of the quantized feature vectors.
        proj_codevector_dim (`int`, *optional*, defaults to 256):
            Dimensionality of the final projection of both the quantized and the transformer features.
        diversity_loss_weight (`int`, *optional*, defaults to 0.1):
            The weight of the codebook diversity loss component.
        ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
            Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
            instance of [`Wav2Vec2ForCTC`].
        ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
            Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
            occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
            of [`Wav2Vec2ForCTC`].
        use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
            Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
            instance of [`Wav2Vec2ForSequenceClassification`].
        classifier_proj_size (`int`, *optional*, defaults to 256):
            Dimensionality of the projection before token mean-pooling for classification.
        tdnn_dim (`Tuple[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
            A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
            module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
        tdnn_kernel (`Tuple[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
            A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
            *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
        tdnn_dilation (`Tuple[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
            A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
            *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
        xvector_output_dim (`int`, *optional*, defaults to 512):
            Dimensionality of the *XVector* embedding vectors.
        add_adapter (`bool`, *optional*, defaults to `False`):
            Whether a convolutional network should be stacked on top of the Wav2Vec2 Encoder. Can be very useful for
            warm-starting Wav2Vec2 for SpeechEncoderDecoder models.
        adapter_kernel_size (`int`, *optional*, defaults to 3):
            Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
        adapter_stride (`int`, *optional*, defaults to 2):
            Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
        num_adapter_layers (`int`, *optional*, defaults to 3):
            Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
            True`.
        output_hidden_size (`int`, *optional*):
            Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
            if `add_adapter is True`.
        use_scan (`bool`, *optional*, defaults to `False`):
            Whether or not to use nn.scan in the Flax Wav2Vec2 transformer layers.

    Example:

    ```python
    >>> from transformers import Wav2Vec2Model, Wav2Vec2Config

    >>> # Initializing a Wav2Vec2 facebook/wav2vec2-base-960h style configuration
    >>> configuration = Wav2Vec2Config()

    >>> # Initializing a model from the facebook/wav2vec2-base-960h style configuration
    >>> model = Wav2Vec2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "wav2vec2"

    def __init__(
        self,
        vocab_size=32,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout=0.1,
        activation_dropout=0.1,
        attention_dropout=0.1,
        feat_proj_dropout=0.0,
        feat_quantizer_dropout=0.0,
        final_dropout=0.1,
        layerdrop=0.1,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        feat_extract_norm="group",
        feat_extract_activation="gelu",
        conv_dim=(512, 512, 512, 512, 512, 512, 512),
        conv_stride=(5, 2, 2, 2, 2, 2, 2),
        conv_kernel=(10, 3, 3, 3, 3, 2, 2),
        conv_bias=False,
        num_conv_pos_embeddings=128,
        num_conv_pos_embedding_groups=16,
        do_stable_layer_norm=False,
        apply_spec_augment=True,
        mask_time_prob=0.05,
        mask_time_length=10,
        mask_time_min_masks=2,
        mask_feature_prob=0.0,
        mask_feature_length=10,
        mask_feature_min_masks=0,
        num_codevectors_per_group=320,
        num_codevector_groups=2,
        contrastive_logits_temperature=0.1,
        num_negatives=100,
        codevector_dim=256,
        proj_codevector_dim=256,
        diversity_loss_weight=0.1,
        ctc_loss_reduction="sum",
        ctc_zero_infinity=False,
        use_weighted_layer_sum=False,
        classifier_proj_size=256,
        tdnn_dim=(512, 512, 512, 512, 1500),
        tdnn_kernel=(5, 3, 3, 1, 1),
        tdnn_dilation=(1, 2, 3, 1, 1),
        xvector_output_dim=512,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        add_adapter=False,
        adapter_kernel_size=3,
        adapter_stride=2,
        num_adapter_layers=3,
        output_hidden_size=None,
        use_scan=False,
        fuse_matmuls=False,
        **kwargs
    ):
        super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
        self.hidden_size = hidden_size
        self.feat_extract_norm = feat_extract_norm
        self.feat_extract_activation = feat_extract_activation
        self.conv_dim = list(conv_dim)
        self.conv_stride = list(conv_stride)
        self.conv_kernel = list(conv_kernel)
        self.conv_bias = conv_bias
        self.num_conv_pos_embeddings = num_conv_pos_embeddings
        self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
        self.num_feat_extract_layers = len(self.conv_dim)
        self.num_hidden_layers = num_hidden_layers
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.num_attention_heads = num_attention_heads
        self.hidden_dropout = hidden_dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.feat_proj_dropout = feat_proj_dropout
        self.final_dropout = final_dropout
        self.layerdrop = layerdrop
        self.layer_norm_eps = layer_norm_eps
        self.initializer_range = initializer_range
        self.vocab_size = vocab_size
        self.do_stable_layer_norm = do_stable_layer_norm
        self.use_weighted_layer_sum = use_weighted_layer_sum
        self.use_scan = use_scan
        self.fuse_matmuls = fuse_matmuls

        if (
            (len(self.conv_stride) != self.num_feat_extract_layers)
            or (len(self.conv_kernel) != self.num_feat_extract_layers)
            or (len(self.conv_dim) != self.num_feat_extract_layers)
        ):
            raise ValueError(
                "Configuration for convolutional layers is incorrect. "
                "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`, "
                f"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride) "
                f"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`."
            )

        # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
        self.apply_spec_augment = apply_spec_augment
        self.mask_time_prob = mask_time_prob
        self.mask_time_length = mask_time_length
        self.mask_time_min_masks = mask_time_min_masks
        self.mask_feature_prob = mask_feature_prob
        self.mask_feature_length = mask_feature_length
        self.mask_feature_min_masks = mask_feature_min_masks

        # parameters for pretraining with codevector quantized representations
        self.num_codevectors_per_group = num_codevectors_per_group
        self.num_codevector_groups = num_codevector_groups
        self.contrastive_logits_temperature = contrastive_logits_temperature
        self.feat_quantizer_dropout = feat_quantizer_dropout
        self.num_negatives = num_negatives
        self.codevector_dim = codevector_dim
        self.proj_codevector_dim = proj_codevector_dim
        self.diversity_loss_weight = diversity_loss_weight

        # ctc loss
        self.ctc_loss_reduction = ctc_loss_reduction
        self.ctc_zero_infinity = ctc_zero_infinity

        # adapter
        self.add_adapter = add_adapter
        self.adapter_kernel_size = adapter_kernel_size
        self.adapter_stride = adapter_stride
        self.num_adapter_layers = num_adapter_layers
        self.output_hidden_size = output_hidden_size or hidden_size

        # SequenceClassification-specific parameter. Feel free to ignore for other classes.
        self.classifier_proj_size = classifier_proj_size

        # XVector-specific parameters. Feel free to ignore for other classes.
        self.tdnn_dim = list(tdnn_dim)
        self.tdnn_kernel = list(tdnn_kernel)
        self.tdnn_dilation = list(tdnn_dilation)
        self.xvector_output_dim = xvector_output_dim

    @property
    def inputs_to_logits_ratio(self):
        return functools.reduce(operator.mul, self.conv_stride, 1)