update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- summarization
|
5 |
+
- english
|
6 |
+
- en
|
7 |
+
- mt5
|
8 |
+
- Abstractive Summarization
|
9 |
+
- generated_from_trainer
|
10 |
+
datasets:
|
11 |
+
- xlsum
|
12 |
+
model-index:
|
13 |
+
- name: mt5-base-finetuned-english
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# mt5-base-finetuned-english
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the xlsum dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 3.3271
|
25 |
+
- Rouge-1: 31.7
|
26 |
+
- Rouge-2: 11.83
|
27 |
+
- Rouge-l: 26.43
|
28 |
+
- Gen Len: 18.88
|
29 |
+
- Bertscore: 74.3
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 0.0005
|
49 |
+
- train_batch_size: 4
|
50 |
+
- eval_batch_size: 4
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 8
|
53 |
+
- total_train_batch_size: 32
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: linear
|
56 |
+
- num_epochs: 5
|
57 |
+
- label_smoothing_factor: 0.1
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
|
62 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
|
63 |
+
| 4.174 | 1.0 | 3125 | 3.5662 | 27.01 | 7.95 | 22.16 | 18.91 | 72.62 |
|
64 |
+
| 3.6577 | 2.0 | 6250 | 3.4304 | 28.84 | 9.09 | 23.64 | 18.87 | 73.32 |
|
65 |
+
| 3.4526 | 3.0 | 9375 | 3.3691 | 29.69 | 9.96 | 24.58 | 18.84 | 73.69 |
|
66 |
+
| 3.3091 | 4.0 | 12500 | 3.3368 | 30.38 | 10.32 | 25.1 | 18.9 | 73.9 |
|
67 |
+
| 3.2056 | 5.0 | 15625 | 3.3271 | 30.7 | 10.65 | 25.45 | 18.89 | 73.99 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.18.0
|
73 |
+
- Pytorch 1.11.0+cu113
|
74 |
+
- Datasets 2.2.0
|
75 |
+
- Tokenizers 0.12.1
|