|
"""A simple, flexible implementation of a GPT model. |
|
|
|
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py |
|
""" |
|
import math |
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
) |
|
from .attention import attn_bias_shape, build_attn_bias |
|
from .blocks import MPTBlock |
|
from .norm import NORM_CLASS_REGISTRY |
|
from .configuration_mpt import MPTConfig |
|
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising |
|
from .hf_prefixlm_converter import ( |
|
add_bidirectional_mask_if_missing, |
|
convert_hf_causal_lm_to_prefix_lm, |
|
) |
|
from .meta_init_context import init_empty_weights |
|
from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_ |
|
|
|
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast] |
|
|
|
|
|
class MPTPreTrainedModel(PreTrainedModel): |
|
config_class = MPTConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["MPTBlock"] |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, MPTModel): |
|
module.gradient_checkpointing = value |
|
|
|
class MPTModel(MPTPreTrainedModel): |
|
def __init__(self, config: MPTConfig): |
|
config._validate_config() |
|
super().__init__(config) |
|
self.attn_impl = config.attn_config["attn_impl"] |
|
self.prefix_lm = config.attn_config["prefix_lm"] |
|
self.attn_uses_sequence_id = config.attn_config["attn_uses_sequence_id"] |
|
self.alibi = config.attn_config["alibi"] |
|
self.alibi_bias_max = config.attn_config["alibi_bias_max"] |
|
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys(): |
|
norm_options = " | ".join(NORM_CLASS_REGISTRY.keys()) |
|
raise NotImplementedError( |
|
f"Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options})." |
|
) |
|
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()] |
|
self.embedding_fraction = config.embedding_fraction |
|
self.wte = nn.Embedding( |
|
config.vocab_size, config.d_model, device=config.init_device |
|
) |
|
if not self.alibi: |
|
self.wpe = nn.Embedding( |
|
config.max_seq_len, config.d_model, device=config.init_device |
|
) |
|
self.emb_drop = nn.Dropout(config.emb_pdrop) |
|
self.blocks = nn.ModuleList( |
|
[ |
|
MPTBlock(device=config.init_device, **config.to_dict()) |
|
for _ in range(config.n_layers) |
|
] |
|
) |
|
self.norm_f = norm_class(config.d_model, device=config.init_device) |
|
if config.init_device != "meta": |
|
self.apply(self.param_init_fn) |
|
self.is_causal = not self.prefix_lm |
|
self._attn_bias_initialized = False |
|
self.attn_bias = None |
|
self.attn_bias_shape = attn_bias_shape( |
|
self.attn_impl, |
|
config.n_heads, |
|
config.max_seq_len, |
|
self.alibi, |
|
prefix_lm=self.prefix_lm, |
|
causal=self.is_causal, |
|
use_sequence_id=self.attn_uses_sequence_id, |
|
) |
|
if config.no_bias: |
|
for module in self.modules(): |
|
if hasattr(module, "bias") and isinstance(module.bias, nn.Parameter): |
|
if config.verbose: |
|
warnings.warn(f"Removing bias ({module.bias}) from {module}.") |
|
module.register_parameter("bias", None) |
|
if config.verbose and config.verbose > 2: |
|
print(self) |
|
if "verbose" not in self.config.init_config: |
|
self.config.init_config["verbose"] = self.config.verbose |
|
if self.config.init_config["verbose"] > 1: |
|
init_fn_name = self.config.init_config["name"] |
|
warnings.warn(f"Using {init_fn_name} initialization.") |
|
|
|
def get_input_embeddings(self): |
|
return self.wte |
|
|
|
def set_input_embeddings(self, value): |
|
self.wte = value |
|
|
|
@torch.no_grad() |
|
def _attn_bias( |
|
self, |
|
device, |
|
dtype, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
prefix_mask: Optional[torch.ByteTensor] = None, |
|
sequence_id: Optional[torch.LongTensor] = None, |
|
): |
|
if not self._attn_bias_initialized: |
|
if self.attn_bias_shape: |
|
self.attn_bias = torch.zeros( |
|
self.attn_bias_shape, device=device, dtype=dtype |
|
) |
|
self.attn_bias = build_attn_bias( |
|
self.attn_impl, |
|
self.attn_bias, |
|
self.config.n_heads, |
|
self.config.max_seq_len, |
|
causal=self.is_causal, |
|
alibi=self.alibi, |
|
alibi_bias_max=self.alibi_bias_max, |
|
) |
|
self._attn_bias_initialized = True |
|
if self.attn_impl == "flash": |
|
return (self.attn_bias, attention_mask) |
|
if self.attn_bias is not None: |
|
self.attn_bias = self.attn_bias.to(dtype=dtype, device=device) |
|
attn_bias = self.attn_bias |
|
if self.prefix_lm: |
|
assert isinstance(attn_bias, torch.Tensor) |
|
assert isinstance(prefix_mask, torch.Tensor) |
|
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask) |
|
if self.attn_uses_sequence_id and sequence_id is not None: |
|
assert isinstance(attn_bias, torch.Tensor) |
|
attn_bias = self._apply_sequence_id(attn_bias, sequence_id) |
|
if attention_mask is not None: |
|
s_k = attention_mask.shape[-1] |
|
if attn_bias is None: |
|
attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype) |
|
else: |
|
attn_bias = attn_bias[:, :, :, -s_k:] |
|
if prefix_mask is not None and attention_mask.shape != prefix_mask.shape: |
|
raise ValueError( |
|
f"attention_mask shape={attention_mask.shape} " |
|
+ f"and prefix_mask shape={prefix_mask.shape} are not equal." |
|
) |
|
min_val = torch.finfo(attn_bias.dtype).min |
|
attn_bias = attn_bias.masked_fill( |
|
~attention_mask.view(-1, 1, 1, s_k), min_val |
|
) |
|
return (attn_bias, None) |
|
|
|
def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor): |
|
(s_k, s_q) = attn_bias.shape[-2:] |
|
if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len: |
|
raise ValueError( |
|
"attn_bias does not match the expected shape. " |
|
+ f"The last two dimensions should both be {self.config.max_length} " |
|
+ f"but are {s_k} and {s_q}." |
|
) |
|
seq_len = prefix_mask.shape[-1] |
|
if seq_len > self.config.max_seq_len: |
|
raise ValueError( |
|
f"prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}" |
|
) |
|
attn_bias = attn_bias[..., :seq_len, :seq_len] |
|
causal = torch.tril( |
|
torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device) |
|
).view(1, 1, seq_len, seq_len) |
|
prefix = prefix_mask.view(-1, 1, 1, seq_len) |
|
cannot_attend = ~torch.logical_or(causal, prefix.bool()) |
|
min_val = torch.finfo(attn_bias.dtype).min |
|
attn_bias = attn_bias.masked_fill(cannot_attend, min_val) |
|
return attn_bias |
|
|
|
def _apply_sequence_id( |
|
self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor |
|
): |
|
seq_len = sequence_id.shape[-1] |
|
if seq_len > self.config.max_seq_len: |
|
raise ValueError( |
|
f"sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}" |
|
) |
|
attn_bias = attn_bias[..., :seq_len, :seq_len] |
|
cannot_attend = torch.logical_not( |
|
torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len)) |
|
).unsqueeze(1) |
|
min_val = torch.finfo(attn_bias.dtype).min |
|
attn_bias = attn_bias.masked_fill(cannot_attend, min_val) |
|
return attn_bias |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
prefix_mask: Optional[torch.ByteTensor] = None, |
|
sequence_id: Optional[torch.LongTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
use_cache: Optional[bool] = None, |
|
): |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.return_dict |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.bool() |
|
if prefix_mask is not None: |
|
prefix_mask = prefix_mask.bool() |
|
if not return_dict: |
|
raise NotImplementedError( |
|
"return_dict False is not implemented yet for MPT" |
|
) |
|
if output_attentions: |
|
raise NotImplementedError( |
|
"output_attentions is not implemented yet for MPT" |
|
) |
|
if ( |
|
attention_mask is not None |
|
and attention_mask[:, 0].sum() != attention_mask.shape[0] |
|
and self.training |
|
): |
|
raise NotImplementedError( |
|
"MPT does not support training with left padding." |
|
) |
|
if self.prefix_lm and prefix_mask is None: |
|
raise ValueError( |
|
"prefix_mask is a required argument when MPT is configured with prefix_lm=True." |
|
) |
|
if self.training: |
|
if self.attn_uses_sequence_id and sequence_id is None: |
|
raise ValueError( |
|
"sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True " |
|
+ "and the model is in train mode." |
|
) |
|
elif self.attn_uses_sequence_id is False and sequence_id is not None: |
|
warnings.warn( |
|
"MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. " |
|
+ "This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True." |
|
) |
|
S = input_ids.size(1) |
|
assert ( |
|
S <= self.config.max_seq_len |
|
), f"Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}" |
|
tok_emb = self.wte(input_ids) |
|
if self.alibi: |
|
x = tok_emb |
|
else: |
|
past_position = 0 |
|
if past_key_values is not None: |
|
if len(past_key_values) != self.config.n_layers: |
|
raise ValueError( |
|
f"past_key_values must provide a past_key_value for each attention " |
|
+ f"layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r})." |
|
) |
|
past_position = past_key_values[0][0].size(1) |
|
if S + past_position > self.config.max_seq_len: |
|
raise ValueError( |
|
f"Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}." |
|
) |
|
pos = torch.arange( |
|
past_position, |
|
S + past_position, |
|
dtype=torch.long, |
|
device=input_ids.device, |
|
).unsqueeze(0) |
|
if attention_mask is not None: |
|
pos = torch.clamp( |
|
pos |
|
- torch.cumsum((~attention_mask).to(torch.int32), dim=1)[ |
|
:, past_position: |
|
], |
|
min=0, |
|
) |
|
pos_emb = self.wpe(pos) |
|
x = tok_emb + pos_emb |
|
if self.embedding_fraction == 1: |
|
x = self.emb_drop(x) |
|
else: |
|
x_shrunk = x * self.embedding_fraction + x.detach() * ( |
|
1 - self.embedding_fraction |
|
) |
|
assert isinstance(self.emb_drop, nn.Module) |
|
x = self.emb_drop(x_shrunk) |
|
(attn_bias, attention_mask) = self._attn_bias( |
|
device=x.device, |
|
dtype=x.dtype, |
|
attention_mask=attention_mask, |
|
prefix_mask=prefix_mask, |
|
sequence_id=sequence_id, |
|
) |
|
if use_cache and past_key_values is None: |
|
past_key_values = [() for _ in range(self.config.n_layers)] |
|
all_hidden_states = () if output_hidden_states else None |
|
for b_idx, block in enumerate(self.blocks): |
|
if output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states = all_hidden_states + (x,) |
|
past_key_value = ( |
|
past_key_values[b_idx] if past_key_values is not None else None |
|
) |
|
(x, past_key_value) = block( |
|
x, |
|
past_key_value=past_key_value, |
|
attn_bias=attn_bias, |
|
attention_mask=attention_mask, |
|
is_causal=self.is_causal, |
|
) |
|
if past_key_values is not None: |
|
past_key_values[b_idx] = past_key_value |
|
x = self.norm_f(x) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=x, |
|
past_key_values=past_key_values, |
|
hidden_states=all_hidden_states, |
|
) |
|
|
|
def param_init_fn(self, module): |
|
init_fn_name = self.config.init_config["name"] |
|
MODEL_INIT_REGISTRY[init_fn_name]( |
|
module=module, |
|
n_layers=self.config.n_layers, |
|
d_model=self.config.d_model, |
|
**self.config.init_config, |
|
) |
|
|
|
def fsdp_wrap_fn(self, module): |
|
return isinstance(module, MPTBlock) |
|
|
|
def activation_checkpointing_fn(self, module): |
|
return isinstance(module, MPTBlock) |
|
|
|
|
|
class MPTForCausalLM(MPTPreTrainedModel): |
|
def __init__(self, config: MPTConfig): |
|
super().__init__(config) |
|
if not config.tie_word_embeddings: |
|
raise ValueError("MPTForCausalLM only supports tied word embeddings") |
|
self.transformer = MPTModel(config) |
|
self.logit_scale = None |
|
if config.logit_scale is not None: |
|
logit_scale = config.logit_scale |
|
if isinstance(logit_scale, str): |
|
if logit_scale == "inv_sqrt_d_model": |
|
logit_scale = 1 / math.sqrt(config.d_model) |
|
else: |
|
raise ValueError( |
|
f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'." |
|
) |
|
self.logit_scale = logit_scale |
|
|
|
def get_input_embeddings(self): |
|
return self.transformer.wte |
|
|
|
def set_input_embeddings(self, value): |
|
self.transformer.wte = value |
|
|
|
def get_output_embeddings(self): |
|
return self.transformer.wte |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.transformer.wte = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.transformer = decoder |
|
|
|
def get_decoder(self): |
|
return self.transformer |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
prefix_mask: Optional[torch.ByteTensor] = None, |
|
sequence_id: Optional[torch.LongTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
use_cache: Optional[bool] = None, |
|
): |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.return_dict |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
outputs = self.transformer( |
|
input_ids=input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
prefix_mask=prefix_mask, |
|
sequence_id=sequence_id, |
|
return_dict=return_dict, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
use_cache=use_cache, |
|
) |
|
logits = F.linear(outputs.last_hidden_state, self.transformer.wte.weight) |
|
if self.logit_scale is not None: |
|
if self.logit_scale == 0: |
|
warnings.warn( |
|
f"Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs." |
|
) |
|
logits *= self.logit_scale |
|
loss = None |
|
if labels is not None: |
|
labels = torch.roll(labels, shifts=-1) |
|
labels[:, -1] = -100 |
|
loss = F.cross_entropy( |
|
logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1) |
|
) |
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
) |
|
|
|
def param_init_fn(self, module): |
|
init_fn_name = self.config.init_config["name"] |
|
MODEL_INIT_REGISTRY[init_fn_name]( |
|
module=module, |
|
n_layers=self.config.n_layers, |
|
d_model=self.config.d_model, |
|
**self.config.init_config, |
|
) |
|
|
|
def fsdp_wrap_fn(self, module): |
|
return isinstance(module, MPTBlock) |
|
|
|
def activation_checkpointing_fn(self, module): |
|
return isinstance(module, MPTBlock) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs |
|
): |
|
if inputs_embeds is not None: |
|
raise NotImplementedError("inputs_embeds is not implemented for MPT yet") |
|
attention_mask = kwargs["attention_mask"].bool() |
|
if attention_mask[:, -1].sum() != attention_mask.shape[0]: |
|
raise NotImplementedError( |
|
"MPT does not support generation with right padding." |
|
) |
|
if self.transformer.attn_uses_sequence_id and self.training: |
|
sequence_id = torch.zeros_like(input_ids[:1]) |
|
else: |
|
sequence_id = None |
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if self.transformer.prefix_lm: |
|
prefix_mask = torch.ones_like(attention_mask) |
|
if kwargs.get("use_cache") == False: |
|
raise NotImplementedError( |
|
"MPT with prefix_lm=True does not support use_cache=False." |
|
) |
|
else: |
|
prefix_mask = None |
|
return { |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"prefix_mask": prefix_mask, |
|
"sequence_id": sequence_id, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache", True), |
|
} |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
"""Used by HuggingFace generate when using beam search with kv-caching. |
|
|
|
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133 |
|
for an example in transformers. |
|
""" |
|
reordered_past = [] |
|
for layer_past in past_key_values: |
|
reordered_past += [ |
|
tuple( |
|
(past_state.index_select(0, beam_idx) for past_state in layer_past) |
|
) |
|
] |
|
return reordered_past |
|
|