import math import warnings from collections.abc import Sequence from functools import partial from typing import Optional, Tuple, Union import torch from torch import nn from .norm import NORM_CLASS_REGISTRY def torch_default_param_init_fn_(module: nn.Module, verbose: int = 0, **kwargs): del kwargs if verbose > 1: warnings.warn(f"Initializing network using module's reset_parameters attribute") if hasattr(module, "reset_parameters"): module.reset_parameters() def fused_init_helper_(module: nn.Module, init_fn_): _fused = getattr(module, "_fused", None) if _fused is None: raise RuntimeError(f"Internal logic error") (dim, splits) = _fused splits = (0, *splits, module.weight.size(dim)) for s, e in zip(splits[:-1], splits[1:]): slice_indices = [slice(None)] * module.weight.ndim slice_indices[dim] = slice(s, e) init_fn_(module.weight[slice_indices]) def generic_param_init_fn_( module: nn.Module, init_fn_, n_layers: int, d_model: Optional[int] = None, init_div_is_residual: Union[int, float, str, bool] = True, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, verbose: int = 0, **kwargs, ): del kwargs if verbose > 1: warnings.warn(f"If model has bias parameters they are initialized to 0.") init_div_is_residual = init_div_is_residual if init_div_is_residual is False: div_is_residual = 1.0 elif init_div_is_residual is True: div_is_residual = math.sqrt(2 * n_layers) elif isinstance(init_div_is_residual, float) or isinstance( init_div_is_residual, int ): div_is_residual = init_div_is_residual elif isinstance(init_div_is_residual, str) and init_div_is_residual.isnumeric(): div_is_residual = float(init_div_is_residual) else: div_is_residual = 1.0 raise ValueError( f"Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}" ) if init_div_is_residual is not False: if verbose > 1: warnings.warn( f"Initializing _is_residual layers then dividing them by {div_is_residual:.3f}. " + f"Set `init_div_is_residual: false` in init config to disable this." ) if isinstance(module, nn.Linear): if hasattr(module, "_fused"): fused_init_helper_(module, init_fn_) else: init_fn_(module.weight) if module.bias is not None: torch.nn.init.zeros_(module.bias) if init_div_is_residual is not False and getattr(module, "_is_residual", False): with torch.no_grad(): module.weight.div_(div_is_residual) elif isinstance(module, nn.Embedding): if emb_init_std is not None: std = emb_init_std if std == 0: warnings.warn(f"Embedding layer initialized to 0.") emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std) if verbose > 1: warnings.warn( f"Embedding layer initialized using normal distribution with mean=0 and std={std!r}." ) elif emb_init_uniform_lim is not None: lim = emb_init_uniform_lim if isinstance(lim, Sequence): if len(lim) > 2: raise ValueError( f"Uniform init requires a min and a max limit. User input: {lim}." ) if lim[0] == lim[1]: warnings.warn(f"Embedding layer initialized to {lim[0]}.") else: if lim == 0: warnings.warn(f"Embedding layer initialized to 0.") lim = [-lim, lim] (a, b) = lim emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b) if verbose > 1: warnings.warn( f"Embedding layer initialized using uniform distribution in range {lim}." ) else: emb_init_fn_ = init_fn_ emb_init_fn_(module.weight) elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))): if verbose > 1: warnings.warn( f"Norm weights are set to 1. If norm layer has a bias it is initialized to 0." ) if hasattr(module, "weight") and module.weight is not None: torch.nn.init.ones_(module.weight) if hasattr(module, "bias") and module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.MultiheadAttention): if module._qkv_same_embed_dim: assert module.in_proj_weight is not None assert ( module.q_proj_weight is None and module.k_proj_weight is None and (module.v_proj_weight is None) ) assert d_model is not None _d = d_model splits = (0, _d, 2 * _d, 3 * _d) for s, e in zip(splits[:-1], splits[1:]): init_fn_(module.in_proj_weight[s:e]) else: assert ( module.q_proj_weight is not None and module.k_proj_weight is not None and (module.v_proj_weight is not None) ) assert module.in_proj_weight is None init_fn_(module.q_proj_weight) init_fn_(module.k_proj_weight) init_fn_(module.v_proj_weight) if module.in_proj_bias is not None: torch.nn.init.zeros_(module.in_proj_bias) if module.bias_k is not None: torch.nn.init.zeros_(module.bias_k) if module.bias_v is not None: torch.nn.init.zeros_(module.bias_v) init_fn_(module.out_proj.weight) if init_div_is_residual is not False and getattr( module.out_proj, "_is_residual", False ): with torch.no_grad(): module.out_proj.weight.div_(div_is_residual) if module.out_proj.bias is not None: torch.nn.init.zeros_(module.out_proj.bias) else: for _ in module.parameters(recurse=False): raise NotImplementedError( f"{module.__class__.__name__} parameters are not initialized by param_init_fn." ) def _normal_init_(std, mean=0.0): return partial(torch.nn.init.normal_, mean=mean, std=std) def _normal_param_init_fn_( module: nn.Module, std: float, n_layers: int, d_model: Optional[int] = None, init_div_is_residual: Union[int, float, str, bool] = True, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, verbose: int = 0, **kwargs, ): del kwargs init_fn_ = _normal_init_(std=std) if verbose > 1: warnings.warn(f"Using torch.nn.init.normal_ init fn mean=0.0, std={std}") generic_param_init_fn_( module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose, ) def baseline_param_init_fn_( module: nn.Module, init_std: float, n_layers: int, d_model: Optional[int] = None, init_div_is_residual: Union[int, float, str, bool] = True, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, verbose: int = 0, **kwargs, ): del kwargs if init_std is None: raise ValueError( "You must set model.init_config['init_std'] to a float value to use the default initialization scheme." ) _normal_param_init_fn_( module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose, ) def small_param_init_fn_( module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool] = True, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, verbose: int = 0, **kwargs, ): del kwargs std = math.sqrt(2 / (5 * d_model)) _normal_param_init_fn_( module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose, ) def neox_param_init_fn_( module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, verbose: int = 0, **kwargs, ): """From section 2.3.1 of GPT-NeoX-20B: An Open-Source AutoregressiveLanguage Model — Black et. al. (2022) see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151 and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py """ del kwargs residual_div = n_layers / math.sqrt(10) if verbose > 1: warnings.warn(f"setting init_div_is_residual to {residual_div}") small_param_init_fn_( module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose, ) def kaiming_uniform_param_init_fn_( module: nn.Module, n_layers: int, d_model: Optional[int] = None, init_div_is_residual: Union[int, float, str, bool] = True, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, init_gain: float = 0, fan_mode: str = "fan_in", init_nonlinearity: str = "leaky_relu", verbose: int = 0, **kwargs, ): del kwargs if verbose > 1: warnings.warn( f"Using nn.init.kaiming_uniform_ init fn with parameters: " + f"a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}" ) kaiming_uniform_ = partial( nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity, ) generic_param_init_fn_( module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose, ) def kaiming_normal_param_init_fn_( module: nn.Module, n_layers: int, d_model: Optional[int] = None, init_div_is_residual: Union[int, float, str, bool] = True, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, init_gain: float = 0, fan_mode: str = "fan_in", init_nonlinearity: str = "leaky_relu", verbose: int = 0, **kwargs, ): del kwargs if verbose > 1: warnings.warn( f"Using nn.init.kaiming_normal_ init fn with parameters: " + f"a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}" ) kaiming_normal_ = partial( torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity, ) generic_param_init_fn_( module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose, ) def xavier_uniform_param_init_fn_( module: nn.Module, n_layers: int, d_model: Optional[int] = None, init_div_is_residual: Union[int, float, str, bool] = True, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, init_gain: float = 0, verbose: int = 0, **kwargs, ): del kwargs xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain) if verbose > 1: warnings.warn( f"Using torch.nn.init.xavier_uniform_ init fn with parameters: " + f"gain={init_gain}" ) generic_param_init_fn_( module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose, ) def xavier_normal_param_init_fn_( module: nn.Module, n_layers: int, d_model: Optional[int] = None, init_div_is_residual: Union[int, float, str, bool] = True, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, init_gain: float = 0, verbose: int = 0, **kwargs, ): xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain) if verbose > 1: warnings.warn( f"Using torch.nn.init.xavier_normal_ init fn with parameters: " + f"gain={init_gain}" ) generic_param_init_fn_( module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose, ) MODEL_INIT_REGISTRY = { "default_": torch_default_param_init_fn_, "baseline_": baseline_param_init_fn_, "kaiming_uniform_": kaiming_uniform_param_init_fn_, "kaiming_normal_": kaiming_normal_param_init_fn_, "neox_init_": neox_param_init_fn_, "small_init_": small_param_init_fn_, "xavier_uniform_": xavier_uniform_param_init_fn_, "xavier_normal_": xavier_normal_param_init_fn_, }