File size: 4,129 Bytes
f503f5d
 
 
 
 
5ec24e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f503f5d
 
8d57e97
2c3c0b0
f499a00
 
dbbcb88
2af004d
 
 
9fac2b5
 
 
 
 
 
 
ac382e2
029d608
4cdddf5
ac382e2
 
 
 
 
 
f6905cf
ac382e2
 
5ec24e5
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
license: apache-2.0
datasets:
- euclaise/SuperMC
- euclaise/prm800k_preferences
model-index:
- name: crow-1b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 25.51
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=euclaise/crow-1b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 25.87
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=euclaise/crow-1b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 24.8
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=euclaise/crow-1b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 48.28
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=euclaise/crow-1b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 49.41
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=euclaise/crow-1b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.83
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=euclaise/crow-1b
      name: Open LLM Leaderboard
---

Expirements in large-scale small-scale preference learning.

**This one was a failure, it benchmarks horribly, despite responding okay to trivia questions in testing**

falcon-rw-1b trained with PRO (preference ranking optimization, see https://arxiv.org/abs/2306.17492) on SuperMC and PRM800K (only stage 1) for 3 epochs, using my supertrainer2000 framework.

This is an expiremental model.

Benchmarks coming soon.

Hyperparameters:
- AdamW, weight decay of 0.01, otherwise default hyperparams
- Maximum LR of 1e-5
- Cosine schedule with a warmup of 5400 steps
- Batch size of 4 (2 real x 2 accumulated)
- Maximum of 5 epochs, early stopping (visual observation), stopped after 3
- Gradient clipping norm value of 1.0
- PRO beta of 4

Training prompt format:

```
### Query
[insert instruction here]

### Answer
[insert response here]
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_euclaise__crow-1b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |29.12|
|AI2 Reasoning Challenge (25-Shot)|25.51|
|HellaSwag (10-Shot)              |25.87|
|MMLU (5-Shot)                    |24.80|
|TruthfulQA (0-shot)              |48.28|
|Winogrande (5-shot)              |49.41|
|GSM8k (5-shot)                   | 0.83|