File size: 2,751 Bytes
14099f9
 
 
 
 
2d8c24e
 
 
14099f9
 
 
 
 
 
 
 
 
 
 
2d8c24e
5061e30
 
 
14099f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5061e30
14099f9
 
 
 
 
5e03d05
14099f9
 
 
2d8c24e
 
5061e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14099f9
 
 
 
2d8c24e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: cc-by-sa-4.0
base_model: klue/bert-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: degree-bert-finetuning-2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# degree-bert-finetuning-2

This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5866
- Accuracy: 0.702
- F1: 0.7023

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.9822        | 1.0   | 104  | 0.7872          | 0.638    | 0.6374 |
| 0.8237        | 2.0   | 208  | 0.7235          | 0.656    | 0.6552 |
| 0.7869        | 3.0   | 312  | 0.7140          | 0.658    | 0.6521 |
| 0.755         | 4.0   | 416  | 0.6894          | 0.678    | 0.6762 |
| 0.7368        | 5.0   | 520  | 0.6562          | 0.7      | 0.7004 |
| 0.7164        | 6.0   | 624  | 0.6501          | 0.696    | 0.6951 |
| 0.7032        | 7.0   | 728  | 0.6437          | 0.708    | 0.7084 |
| 0.6911        | 8.0   | 832  | 0.6097          | 0.694    | 0.6930 |
| 0.6759        | 9.0   | 936  | 0.6034          | 0.702    | 0.7019 |
| 0.6671        | 10.0  | 1040 | 0.6038          | 0.69     | 0.6890 |
| 0.6573        | 11.0  | 1144 | 0.6016          | 0.704    | 0.7033 |
| 0.653         | 12.0  | 1248 | 0.5920          | 0.712    | 0.7126 |
| 0.6364        | 13.0  | 1352 | 0.5950          | 0.708    | 0.7085 |
| 0.6386        | 14.0  | 1456 | 0.5922          | 0.688    | 0.6864 |
| 0.6321        | 15.0  | 1560 | 0.5853          | 0.71     | 0.7105 |
| 0.6193        | 16.0  | 1664 | 0.5936          | 0.69     | 0.6889 |
| 0.6109        | 17.0  | 1768 | 0.5838          | 0.714    | 0.7145 |
| 0.612         | 18.0  | 1872 | 0.5838          | 0.716    | 0.7168 |
| 0.6083        | 19.0  | 1976 | 0.5884          | 0.708    | 0.7077 |
| 0.5948        | 20.0  | 2080 | 0.5866          | 0.702    | 0.7023 |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.2.0
- Datasets 2.17.1
- Tokenizers 0.15.2