evamaxfield commited on
Commit
2c99496
1 Parent(s): 513f6c6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -13
README.md CHANGED
@@ -3,7 +3,10 @@ license: apache-2.0
3
  tags:
4
  - generated_from_trainer
5
  metrics:
 
6
  - accuracy
 
 
7
  model-index:
8
  - name: soft-search
9
  results: []
@@ -16,8 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.2610
20
- - Accuracy: 0.8333
 
 
 
21
 
22
  ## Model description
23
 
@@ -46,18 +52,18 @@ The following hyperparameters were used during training:
46
 
47
  ### Training results
48
 
49
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
50
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
51
- | No log | 1.0 | 3 | 0.8268 | 0.75 |
52
- | No log | 2.0 | 6 | 0.3217 | 0.8333 |
53
- | No log | 3.0 | 9 | 0.2988 | 0.8333 |
54
- | 0.6789 | 4.0 | 12 | 0.2457 | 0.9167 |
55
- | 0.6789 | 5.0 | 15 | 0.2610 | 0.8333 |
56
 
57
 
58
  ### Framework versions
59
 
60
- - Transformers 4.21.1
61
- - Pytorch 1.12.0+cu102
62
- - Datasets 2.4.0
63
- - Tokenizers 0.12.1
 
3
  tags:
4
  - generated_from_trainer
5
  metrics:
6
+ - f1
7
  - accuracy
8
+ - precision
9
+ - recall
10
  model-index:
11
  - name: soft-search
12
  results: []
 
19
 
20
  This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.7833
23
+ - F1: 0.5304
24
+ - Accuracy: 0.6780
25
+ - Precision: 0.5333
26
+ - Recall: 0.5275
27
 
28
  ## Model description
29
 
 
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall |
56
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|
57
+ | 0.5776 | 1.0 | 50 | 0.6066 | 0.3803 | 0.6667 | 0.5294 | 0.2967 |
58
+ | 0.5545 | 2.0 | 100 | 0.6261 | 0.4331 | 0.6629 | 0.5152 | 0.3736 |
59
+ | 0.4599 | 3.0 | 150 | 0.7046 | 0.5472 | 0.6364 | 0.4793 | 0.6374 |
60
+ | 0.2527 | 4.0 | 200 | 0.7285 | 0.5521 | 0.6742 | 0.5248 | 0.5824 |
61
+ | 0.2423 | 5.0 | 250 | 0.7833 | 0.5304 | 0.6780 | 0.5333 | 0.5275 |
62
 
63
 
64
  ### Framework versions
65
 
66
+ - Transformers 4.24.0
67
+ - Pytorch 1.13.0+cu117
68
+ - Datasets 2.3.2
69
+ - Tokenizers 0.13.2