--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - accuracy - precision - recall base_model: distilbert-base-uncased-finetuned-sst-2-english model-index: - name: soft-search results: [] --- # soft-search This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5558 - F1: 0.5960 - Accuracy: 0.7109 - Precision: 0.5769 - Recall: 0.6164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:| | 0.5939 | 1.0 | 71 | 0.5989 | 0.0533 | 0.6635 | 1.0 | 0.0274 | | 0.5903 | 2.0 | 142 | 0.5558 | 0.5960 | 0.7109 | 0.5769 | 0.6164 | | 0.4613 | 3.0 | 213 | 0.6670 | 0.5641 | 0.6777 | 0.5301 | 0.6027 | | 0.4454 | 4.0 | 284 | 0.7647 | 0.5541 | 0.6872 | 0.5467 | 0.5616 | | 0.2931 | 5.0 | 355 | 0.8726 | 0.5139 | 0.6682 | 0.5211 | 0.5068 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2