import logging DEFAULT_MESSAGE_TEMPLATE = "{role}\n{content}\n" DEFAULT_SYSTEM_PROMPT = "Ты — PavelGPT, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им." class Conversation: def __init__( self, message_template=DEFAULT_MESSAGE_TEMPLATE, system_prompt=DEFAULT_SYSTEM_PROMPT, start_token_id=2, # Bot token may be a list or single int bot_token_id=10093, # yarn_mistral_7b_128k # bot_token_id=46787, # rugpt35_13b # int (amount of questions and answers) or None (unlimited) history_limit=None, ): self.logger = logging.getLogger('Conversation') self.message_template = message_template self.start_token_id = start_token_id self.bot_token_id = bot_token_id self.history_limit = history_limit self.messages = [ { "role": "system", "content": system_prompt }, { "role": "bot", "content": "Здравствуйте! Чем могу помочь?" } ] def get_start_token_id(self): return self.start_token_id def get_bot_token_id(self): return self.bot_token_id def add_message(self, role, message): self.messages.append({ "role": role, "content": message }) self.trim_history() def add_user_message(self, message): self.add_message("user", message) def add_bot_message(self, message): self.add_message("assistant", message) def trim_history(self): if self.history_limit is not None and len(self.messages) > self.history_limit + 2: overflow = len(self.messages) - (self.history_limit + 2) self.messages = [self.messages[0]] + self.messages[overflow + 2:] # remove old messages except system def get_prompt(self, tokenizer): final_text = "" # print(self.messages) for message in self.messages: message_text = self.message_template.format(**message) final_text += message_text # Bot token id may be an array if isinstance(self.bot_token_id, (list, tuple)): final_text += tokenizer.decode([self.start_token_id] + self.bot_token_id) else: final_text += tokenizer.decode([self.start_token_id, self.bot_token_id]) return final_text.strip() def generate(model, prompt, messages, generation_config): output = model( prompt, top_k=generation_config.top_k, top_p=generation_config.top_p, temperature=generation_config.temperature, repeat_penalty=generation_config.repetition_penalty, )['choices'][0]['text'] return output.strip() from llama_cpp import Llama import os from pathlib import Path from huggingface_hub.file_download import http_get from transformers import GenerationConfig directory = Path('.').resolve() model_name = "pavelgpt_7b_128k/ggml-model-q8_0.gguf" generation_config = GenerationConfig.from_pretrained("pavelgpt_7b_128k") final_model_path = str(directory / model_name) # if not os.path.exists(final_model_path): # with open(final_model_path, "wb") as f: # http_get(model_url, f) # os.chmod(final_model_path, 0o777) # print(f"{final_model_path} files downloaded.") model = Llama( model_path=final_model_path, # verbose=True, n_gpu_layers=5, n_ctx=4096, max_length=200, echo=True, ) conversation = Conversation(bot_token_id=7451) while True: user_message = input("User: ") # Reset chat command if user_message.strip() == "/reset": conversation = Conversation(bot_token_id=7451) print("History reset completed!") continue # Skip empty messages from user if user_message.strip() == "": continue conversation.add_user_message(user_message) prompt = conversation.get_prompt(model.tokenizer()) output = generate( model=model, prompt=prompt, generation_config=generation_config, messages=conversation.messages ) conversation.add_bot_message(output) print("Bot:", output) print() print("==============================") print()