Add code example
Browse files
README.md
CHANGED
@@ -28,16 +28,22 @@ You can use the raw model for object detection. See the [model hub](https://hugg
|
|
28 |
Here is how to use this model:
|
29 |
|
30 |
```python
|
31 |
-
from transformers import
|
32 |
from PIL import Image
|
33 |
import requests
|
|
|
34 |
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
35 |
image = Image.open(requests.get(url, stream=True).raw)
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
39 |
outputs = model(**inputs)
|
40 |
-
|
|
|
|
|
|
|
41 |
```
|
42 |
|
43 |
Currently, both the feature extractor and model support PyTorch.
|
|
|
28 |
Here is how to use this model:
|
29 |
|
30 |
```python
|
31 |
+
from transformers import DetrFeatureExtractor, DetrForObjectDetection
|
32 |
from PIL import Image
|
33 |
import requests
|
34 |
+
|
35 |
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
36 |
image = Image.open(requests.get(url, stream=True).raw)
|
37 |
+
|
38 |
+
feature_extractor = DetrFeatureExtractor.from_pretrained('facebook/detr-resnet-50')
|
39 |
+
model = DetrForObjectDetection.from_pretrained('facebook/detr-resnet-50')
|
40 |
+
|
41 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
42 |
outputs = model(**inputs)
|
43 |
+
|
44 |
+
# model predicts bounding boxes and corresponding COCO classes
|
45 |
+
logits = outputs.logits
|
46 |
+
bboxes = outputs.pred_boxes
|
47 |
```
|
48 |
|
49 |
Currently, both the feature extractor and model support PyTorch.
|