Olga Golovneva
commited on
Commit
•
cf802b6
1
Parent(s):
f3c5584
First model version for roscoe-512-roberta-base
Browse files- README.md +29 -0
- config.json +26 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
README.md
CHANGED
@@ -1,3 +1,32 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-4.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-nc-4.0
|
3 |
---
|
4 |
+
## roscoe-512-roberta-base
|
5 |
+
|
6 |
+
Sentence embedding model for reasoning steps.
|
7 |
+
|
8 |
+
To obtain reasoning step embeddings, we finetune SimCSE (Gao et al., 2021), a
|
9 |
+
supervised sentence similarity model extending the RoBERTa word embedding model (Liu et al., 2019) on
|
10 |
+
multi-step reasoning datasets we listed in §5 (see details in Golovneva et al., 2022). SimCSE is a contrastive learning model
|
11 |
+
that is trained on triplets of reference reasoning steps, positive and hard-negative hypothesis reasoning steps
|
12 |
+
to minimize the cross-entropy objective with in-batch negatives. For contrastive learning, we use the context
|
13 |
+
and reference reasoning steps as a positive sample, and context and perturbed reference steps as
|
14 |
+
hard-negative pairs. With finetuned model we embed each individual step, as well as a reasoning chain as a
|
15 |
+
whole. We use the pretrained checkpoint of supervised SimCSE model sup-simcse-roberta-base to initialize
|
16 |
+
our model, and further train it for five epochs on our synthetic train data.
|
17 |
+
|
18 |
+
To train the model, we construct dataset by generating perturbations — i.e.,
|
19 |
+
deterministic modifications — on half of the reference reasoning steps in the following sets: Entailment-Bank
|
20 |
+
(deductive reasoning), ProofWriter (logical reasoning); three arithmetic reasoning datasets MATH, ASDIV and AQUA; EQASC
|
21 |
+
(explanations for commonsense question answering), and StrategyQA (question answering with implicit reasoning strategies).
|
22 |
+
|
23 |
+
References:
|
24 |
+
|
25 |
+
1. Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence embeddings.
|
26 |
+
arXiv preprint arXiv:2104.08821, 2021.
|
27 |
+
2. Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
|
28 |
+
Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
|
29 |
+
preprint arXiv:1907.11692, 2019.
|
30 |
+
3. Olga Golovneva, Moya Chen, Spencer Poff, Martin Corredor, Luke Zettlemoyer, Maryam Fazel-Zarandi, and Asli Celikyilmaz.
|
31 |
+
ROSCOE: A Suite of Metrics for Scoring Step-by-Step Reasoning. arXiv preprint, 2022.
|
32 |
+
4.
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "result/cont-pos-pert-neg-simcse-roberta-base-cosine-0830",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaForCL"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"transformers_version": "4.2.1",
|
23 |
+
"type_vocab_size": 1,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 50265
|
26 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49e43d4bc587a735991673aab6935269a25dbf09892bafa6f66eca87de4c7a5d
|
3 |
+
size 498672439
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "errors": "replace", "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "model_max_length": 512, "name_or_path": "princeton-nlp/sup-simcse-roberta-base", "special_tokens_map_file": "/private/home/olggol/.cache/huggingface/transformers/90ffa7c13d92d368876a3cde38912cf1fbe882d3b2ad0fc6b1ab5d11fa3f7753.a11ebb04664c067c8fe5ef8f8068b0f721263414a26058692f7b2e4ba2a1b342"}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|